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PREFACE

In the 19th century physicists were convinced that there exists a medium, called the aether ()
, with respect to which light and all objects are in motion. James Clerk Maxwell believed that
with the use of light, it is possible to determine Earth’s speed in relation to the aether. Under
the Galilean transformation his equations link the speed of light (c) in the inertial frame of
reference with the frame’s velocity with respect to the aether.

Having become familiar with J. C. Maxwell's deliberations, Albert A. Michelson came up with
an idea for an experiment by which the Earth’s motion with respect to the aether could be
measured with adequate precision and thereby the applicability of the Galilean transformation
to the motion of light could be verified. With an interferometer of his own design he made
calculations from which he obtained the relationship between ‘the shift of interference
fringes’ and the interferometer speed with respect to the aether. After applying the relative
speed of the interferometer against thhe aether as equal to the orbital speed of the Earth
(approximately 30 km/s) he obtained a specific shift value of about 0.04 of a fringe, and he
expected that the shift he was to observe during the experiment would be no smaller than the
value he had calculated. However, in the experiment which he performed in 1881 — after J. C.
Maxwell had already passed away — he observed no such shift. In 1887 Albert Michelson and
Edward Morley jointly repeated the experiments using a more advanced interferometer with
very much the same result as in 1881 i.e. no shift of interference fringes was observed.

While Albert Michelson’s calculations raised no doubts among physicists though the fact that
Michelson—-Morley’s experiments failed to provide the observance of the shift of interference
fringes was weakening their faith in the existence of the aether. Ultimately the aether concept
was abandoned altogether. In 1905 the Galilean transformation was replaced by Hendrik A.
Lorentz’s transformation after Albert Einstein’s presentation of the Special Relativity (SR)
theory that was based on two key postulates. The first assumes that no preferred inertial
frame of reference exists, which effectively means that the aether does not exist, and the
second assumes that the speed of light in a vacuum is the same in all inertial frames of
reference. The QGalilean transformation holds when relative speeds of objects in inertial
frames are negligibly small compared to the speed of light c.

In this work a mathematical model of Albert Michelson's interferometer was designed
assuming that the aether does exists and that the Galilean transformation is in operation. The
authors have created this model to explain exactly why no shift of interference fringes was
observed with the interferometer used in Michelson’s experiments.

Based on the data from the Michelson’'s experiments and the values of the interference fringe
shifts resulting from the mathematical model which incorporated a variety of angles that the
interferometer was positioned at and considered its different speeds against the aether, the
speed of the interferometer on the Earth’'s surface was determined with respect to the aether.
Then given the interferometer speed on the Earth with respect to the aether and the speed at
which the Sun revolves around the center of our Galaxy as well as having taken into
consideration the aberration of starlight, the relative speeds of the Earth, the Sun and the
Galaxy centers with respect to the aether were determined.

O this work, the authors denoted ¢ the aether ¢ (in bold) as defined by the 19" century physicists, and
‘the aether’ as appears throughout this work and is described on p. 103.

5)



For experimental purposes such as investigating particles in linear accelerators, the
coordinates of the absolute velocity of the interferometer, and therefore of any object on the
Earth’s surface, in the horizontal frames of reference were determined. Then, according to
Newton's second law, the motion of a particle was investigated with its speed-related mass
changes considered.

Finally, the decay of unstable particles was researched and it was shown that the elongation
of the Earth’s sidereal day with respect to the time measured by atomic clocks is merely
apparent. The relationship between the time measured by atomic clocks and the clocks’
speed with respect to the aether was determined. This was applied for calculating the Earth’s
and the Sun’s speeds with respect to the aether with the use of atomic clocks.
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this work.
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CHAPTER 1
MATHEMATICAL MODEL

[.1 ALBERT MICHELSON’S INTERFEROMETER

[.1.1 ASSUMPTIONS AND THE COORDINATE SYSTEMS

Let us assume that a medium, called the aether exists. Light and the interferometer move
with respect to the aether. In our considerations, in order to establish the motion of light and
the interferometer with respect to this medium, we introduce three coordinate systems placed
on one plane (Figs. 2, 3 & 4), namely:

1) A preferred absolute inertial coordinate system OXoYo, motionless with respect to the
aether (a frame of reference).

2) An OXY coordinate system.
Its initial point always corresponds to the OXoYo initial point. The OXY coordinate
system can rotate by any @® angle with respect to the OXoYo system.

2) An O’EQ coordinate system fixed to the interferometer. The interferometer’s velocity
\70 is always parallel to the OXo axis. The O'E axis is always parallel to the OX axis.

The system’s origin corresponds to the origin of the OXoYo system only at the initial
time t=0 of an interferometer motion under consideration.

The O’EQ is an inertial system which moves togaether with the interferometer along the OXo

axis at a constant velocity V0 in relation to the OXoYo system. Another inertial system will be
obtained when the value of the \70 velocity modulus is changed and fixed. Thus, if we keep on

applying this procedure, any number of O’EQ inertial systems can be obtained. The \70

velocities are the absolute velocities of the O'EQ systems. The light is an electromagnetic
wave that with respect to the aether travels in a vacuum with the 60 velocity which modulus

(the absolute speed) C0 = const.



Fig. 1 Diagram of Albert Michelson’s interferometer and the trajectory of light rays in the

interferometer.
SYMBOLS:
7S source of light,
S0 slit,
Zl, 22 mirrors,
PP semi-transparent plate,
M screen,
A1" ,A5 points successively reached by a ray of light after leaving the
slit S0 at the angle «a,
B1""’Bs points successively reached by a ray of light after leaving the
slit S0 at the angle S,
77, angles of the light rays refraction in the semi—-transparent plate PP.

BASIC DIMENSIONS:

Ll ’ L2 ’ L3 ’ L4 ’

g  thickness of the semi-transparent plate PP.

The values of basic dimensions and the wavelength of light in a vacuum, can be found on
page 74.

Herein two phenomena i.e. the light diffraction on the slit S0 and the interference of those

rays which after leaving the slit S0 at a,f angles reach one point on the screen M were

exploited. Points A5,B5 coincide.



A, , Z,
Ql \90"0( 7(0
| \%
a3
45200 \A3 PP
\1/2 75°
‘7‘5;}4
\(o az ‘%/a# )9 Zl
5 % A
A 90°-ox
1L AA,
ay
0 X 457 39 Ya a5 E
SN\ Ao 1 X
yb'
M N4 As

Fig. 2 The trajectory of light rays reaching point A5 on screen M after leaving the slit S0 at
the angle «.
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Fig. 3 The trajectory of light rays reaching point 85 on screen M after leaving the slit S0 at
the angle S.



[.1.2 RAYS OF LIGHT IN SEMI-TRANSPARENT PLATE

(Figs. 1, 2 & 3)

According to Snell’s law the following equations can be obtained:

Where: ¥

sin(45° —a) sin(45° +p) C, Ay n
- = - R Y
siny, siny, Cp /Ip

the angles of refraction of the light rays in the PP plate,

the index of refraction for the PP plate with respect to a vacuum,
the speed of light in a vacuum with respect to the aether,

the speed of light in the PP plate with respect to the aether,

the wavelength of light in a vacuum,

the wavelength of light in the PP plate.

The following defines a vacuum:

Vacuum is space filled with the aether and devoid of material particles.
This is an absolute vacuum. In reality such a space or a given volume that is absolutely
matter—free does not exist.

From the above equations we have:

(1.1

(1.2)

(1.3)
(1.4)

. sin(45° —a)
y. =arcsin———=
1 n
2
. sin(45°
y. —arcsin SN+ 5)
2 n
2
C =C /n
p o} 2
ip:ﬂolnz

[.1.3 LINE EQUATIONS IN THE OXY COORDINATE SYSTEM

(Figs. 1, 2,3 & 4)

The straight line equations of the trajectory of light rays:

i Yoo Yo Yy Ys
y12’ y22’ y32’ y42’ y52

The line equation of the mirror Zl:

(1.5)

X=L +tV cosd
1 (o]

The Y line equation of the mirror 22:

(1.6)

Yo = L2 +tV0 sin®

The y, line equation of the screen M:

(1.7)

y, =—L4 +tV0 sin @

10



The y8 line equation of the PP plate on the side of the SO slit.
The coordinates of the point A0 (XaO’ yao) are:
(1) X =L_+tV cosd
a0 3 0
(2%) Y, =tV sin®
The line y, passes through point A0 hence its equation takes the following form:

yg =1945° x—tg45° X0+ VY,
Having considered equations (1##) & (2%*) we obtain:

(1.8) y, =x-L,—tV_(cos®-sin @)

The Y, line equation of the other side of the PP plate.
Yo =Yg —\/Eg therefore

(1.9 Yo = X—Ls —+/2 g —tV, (cos® —sin @)

In equations (1.5) = (1.9) the variable t represents the motion absolute time of the
interferometer.

[.L1.4 THE COORDINATES OF THE Al,..., A5 POINTS AND THE LENGTHS OF
THE a e, SEGMENTS IN THE OXY COORDINATE SYSTEM

The lengths of segments of the distance traveled by a ray of light leaving the slit S0 at the

angle o :

1. POINT A1 AND THE LENGTH OF THE a, SEGMENT

The coordinates of point Al(xal, yal) are determined by straight line equations:

a
yi=tga x , (L8) y, =x-L -tV (cos®-sin®) , tztalzc_l (1%)  so
(o]
(1.10) x =[L, +a Vi(cos@—sin@)]&
S O cosa —sin a
11D [y, =[L +a V—°(cosq>—sinq>)]5"‘—“
| woosoice cosa —sin a

0
The coordinates of the SOAl segment are: SOAl[xal—O, yal—O]

. . 2 2 2

We can write an equation: a1 = xal + yal

which after applying formulae (1.10) and (1.11) takes the following form:
(1.12) a = s

. . Vo
cosa —sin a — (cos® —sin @) —
(0]

11



2. POINT A2 AND THE LENGTH OF THE a, SEGMENT
The equation of the Y, straight line which passes through the point Alisi

Y2 =19(90° —@) X+Yyy ~1g(90° —@) x4
The coordinates of A2 (Xa2’ yaz) point are determined by straight lines equations:

. al+a2
Y, (1.6) y, =L, +tV_sind, t=t = c (2%)  thus
(1.13) | x_=x +Sina[L -y +(a +a )V—"sin@]
’ a2 al CoSa 2 al 1 2 C
(o]
Voo
(1.14) Y., =L2+(a1+a2)c—smq3
(0]
The coordinates of the A1A2 segment are: A1A2[Xa2 X, Y, —yal]
i \Y
3 sina o
o Xy _X321+cosa aZC—Slnd)
V0 )
Yoo Yo = Vo0 ¥2, qsm ) where:
i \%
_Sina 0 :
(1.15) X121 = cosg (L, —yal+a1€sm D)
V0 )
(1.16) Y. =L, +a1C—sm O-y
0
We can now write the following equation:
2 _ _ 2 _ 2 . . —
a; —(Xaz Xal) +(y612 yal) which when solved, gives the following:
[ +4 T
(1.17) a, =2 VB where:
M2
v i Vi sind 2
(1.18) . =—sino(x_ %,y ) (119  r_=1-(=
21 CO a2l coS¢ ya21 22 CO CcoSc
_ 2 2 2
(1.20) M=o T, (X, +Y)

3. POINT A3 AND THE LENGTH OF THE a, SEGMENT
The equation of the straight line Y, which passes through the point Azis given by:
Y3 =—19(90° —a) X+Y,, +19(90° ) X
The coordinates of the A3(Xa3, yaS) point are determined by the equations of straight lines:

al+a2+a

oy _ i _ _ 3
.o (L8 y,=x-L —tV (cos®-sin®d), t—ta3——C (3*%) thus
(0]
sina Vv . cosa
(1.21) X,q = ——————[La + +(a; +a, +a,)—> (cos® —sin ®)]+ —— X
a3 SIﬂOH—COSa[ 3+ Yar +@ta, 3)CO( ) sina+cosa 22
; \Y
sina . cosa
(1.22) =—JL_+ +(a +a.)—2(cos®—-sin ®)]+ ———x _ —L_+
a3 sina+c05a[ 3 Va2 (l 2)C ( J sina+cosa a2 3

0

—(a +a )V—°(cos<1>—sinq)) - &a V—°(cosd)—sind))
12 C, sina+cosa 3C

12



The coordinates of the A2 A3 segment are: A2A3[Xa3 —X_,» Y3 —yaz]

; \Y
SiIna .
X _ =X _+—————a —2(cosd-sin ®)
a3 a2 adl ging+Ccosa 3C0

V
cosa 4 —2 (cos® —sin @) where:

Yas Var “Vasr ~ o s
a3 “az a3l sin ¢ +cosa 3CO

; \Y
sina . cosa
(1.23) X =——"—JL +y _+(a +a )=2(cos® -sin ®)]+ ————X__ —X
a3l  gsing+cosa 3 a2 1 2 C0 sina+cosqg 32 a2

; \%
_ sina o . cosa
(1.24) yaSl—W[LS+ya2+(a1+a2)c—(cos®—sm D)]+

0

% X —L_+
sina+cosa 32 3

\Y
o .
—(a1+a2)C—(cosd>—sm <I>)—ya12
(o]
2 _ _ 2 _ 2
a; = (Xas Xaz) +(ya3 yaz)
Having solved the above equation, we obtain:

_ r31+\/a

(1.25) a3 where:
M3
(1.26) r. =(x__sina-y__ cosa) Yo cos® —sin ®
' * a3t asl C  sina+cosa

v e
(127 r =1-(—o COSPZsn® )2
3 C0 sin ¢ +cosa

2 2 2
(1.28) Mg =Vt 1o (x6131 + yasl)

4. POINT A . AND THE LENGTH OF THE a . SEGMENT
The equation of the Y, straight line which runs through the A3 point is given by:

Y4 =—19(45° +71) X+ Va3 +19(45° +71) Xa3
Through the plate, light travels with the speed of Cp = C0 /n2 (1.3), hence to travel the

a n.a
distance a, in the plate it requires the following time: 4 = é 4

p 0
The coordinates of the A4 (Xa4’ ya4) point are determined by the equations of straight lines:

B a1+a2 +a3+n2a

ad C
0

4 (4%) thus

Y, (1.9 ygzx—L3—\/§g—tVo(cos<D—sincD), t=t

(1.29) | x,

cos(45° \Y .
4=— 5" +n) [Ly ++/2 g+ (ay +a, +a5 +Nn,a,) = (cos® —sin d) +
sin(45° +y;) +cos(@5° +y;) C,

+tg(450 +71) Xa3 * Yasl

sin(45° v .
(1.30) |y , = - In(45” +71) [L; +vV2 g+ (a; +a, +a; +Nnya,) == (cosd —sin @) +
a4 H 0o [o] C
sin(45° + ;) +cos(@5° +y,) 0
+19(45° +71) Xa3 + Yaz]+ Yaz +19(45° +71) Xa3
The coordinates of the A3A4 segment are: A3A4[Xa4 —X 5 You~ ya3] with

13



cos(45° +7,)

X X
a4 a3 a4l

\Y,
+ n.a —>(cos® —sin ®)
sin(45° +y,) +cos(5° +7,) 24C,

sin(45° +7,) v, ( o) .
Y =Y. .=Y . T — n.a —(cos®—sin ® where:
at “a3  Tadl  gjn(45° +;/1)+cos(450 +7,) 24 cC,

cos(45° Y .
(1.3D) Xaa1 = — @s” +7) [Ly +V2g+(ay +a, +a3) = (cosd —sin @) +
Sin(45° +7,) +cos(45° +7,) Co

+tg(450 +71) Xa3 + ya3]_xa3
450 v -
= - — Sin(45” +71) [Ls +v/2 g+(a, +a, +a5) —2 (cos® —sin ) +
sin(45° +y,) +cos@5° +y;) C,

(1.32)

ya41

+tg(450 +71) Xa3 t+ ya3]+tg(450 +71) Xa3
2 _ 2 VERY
a4 - (Xa4 Xa3) + (ya4 yaS)

Having solved the above equation, we obtain:

_ r41+\/E

(1.33) a4 r where:
42
(1.34) r =[x cos@5°+y)-y _sin(45°+y)n V_O cos® —sin @
. 41 a4l 1 a4l 1 2 CO sin(45° +71)+COS(450 +7/1)
(1.35) r =1-(n V_o cosd —sin @ 2
2 2C, sin(45° +y,)+cos@5° +7,)
_r2 2 2
(1.35.1) Mg =T 1, (X, +Y5,)

5. POINT A, AND THE LENGTH OF THE a, SEGMENT

The equation of the Yy straight line which passes through the A4 point is given by:

Ys =—19(90° —a) X+Yqaq +19(90° ) Xa4
The coordinates of the As(xas’ yas) point are determined by the equations of straight lines:

B a1+a2+a3+n2a4+a5

Yy (1.7) y,=-L,+tV_sin®, t=t = c (5%) thus
(1.36) _siha Yo sno
. Xa5_003a[ 4—(a1+a2+a3+n2a4+a5)c—sm +y J+x,
(o]
V0 )
(1.37) yas=—L4+(a1+a2+a3+n2a4+a5)c—smd>
(0]
The coordinates of the A4A5 segment are: A4A5[xas—xa4 , yaS—ya4] with
i Vv
X —x =x_ - M2, o
ab a4 abl coSa 5 C
o]
V0 )
Yos Yo = Yasy + 25 C—sm o where:
(o]
(1.38) _sinap, Yo sina
. Xa51_005a[ 4—(a1+a2+a3+n2a4)c—sm +y.,]

0

14



Y
—_ _0 ¢j —
= L4+(al+a2+a3+n2a4)C sin ® Yo
(o]
2 _ B 2 _ 2
a; _(Xa5 Xa4) +(ya5 ya4)
Having solved this equation we obtain:

r51+\/g

(1.39) Yoo

(1.40) Qg =—— where:
Iy
sin ® \2
(1.41) r =(y  —x Sma)—smd) (1.42)  r_=1- ( 0 ),
51 Yas1 ™ *as1 cosa C 52 C cosa
2
(1.43) Mg =l + r52(xaSl + ya51)

[.L1.5 THE COORDINATES OF THE B ...B, POINTS AND THE LENGTHS OF
THE b ,...b SEGMENTS IN THE OXY COORDINATE SYSTEM

The lengths of distances traveled by the ray of light after leaving the SO slit at the angle

are:

6. POINT Bl AND THE LENGTH OF THE b1 SEGMENT

The coordinates of the Bl(xbl, ybl) point are determined by the straight lines equations:

_ —x—L — _si -t =-L 3
Yip =198 X, (1.8)  y,=x-L, -tV (cos®-sin®), t=t = c (6%) thus
\Y

(1.44) X =[L. +b, — (cos®—sin @)]— 2B
bt *3 1 C, cos B—sin B
(1.45) y_=[L.+b V—°(cosq>—sin oy—Sns
' e oie cos B —sin S

The coordinates of the SOBl segment are: SOBl[Xbl -0, Y -0]

2,2 2
bl _Xb1+ybl :

Having solved this equation we obtain:

L
(1.46) b, = 3

\Y
cos B —sin B —(cos® —sin @) C—O

0

7. POINT B ) AND THE LENGTH THE b2 SEGMENT
The equation of the Y straight line which passes through the Blpoint is:

Y22 =—19(45° = 2) X+ Yy +19(45° = 72) Xy

b, _nb,

C
p 0

The coordinates of the 82 (sz, ybz) point are determined by the straight lines equations:
b +n.b
Y, (1.9 yg=X—L3—\/§g—tvo(cos®—sind>), t=t :% (7%) thus

Light travels the distance b2 within a time interval

b2
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45° — V .
(1.47) Xpo = = OCOS( 72)0 [L3+\/§g +(by +n,b,) =2 (cos® —sin @) + Yo ©
sin(45° —7,) +cos@5° —y,) Co
+19(45° —72) Xy |
in(45° — V .
(1.48) y . =-— Sin(45_ ~7,) [Ly +~/2 g+ (b, +N,0,) —2 (cosd—sin )+ y_ +
b2 sin(45° —y,) +cos@5° —y,) Co bt
+19(45° = 72) X 1+Y, +19(45° —77) Xy
The coordinates of the Ble segment are: Ble[sz X, Yy, —ybl]

cos(45° -7,) v, ( )
X =X =X_ + n_b_ —(cos® -sin ®
b2 bl b2 gjn(45° —7,)+cos@5° -7,) 2z2¢C

sin(45° —y )
Yo~ Vor = Yooy ~ 2
b2 “bl  “b2l sin(45° —y,) +cos(45° - y,)

\
0 H .
n2b2 c (cosd —sin @) where:

0

0
_ \Y
(1.49) Xpo1 = — COSM5” ~7,) [L3+\/§ g+b, =% (cos® —sin ®) +y,, +
sin(45° —y,)+cos(@5° - y,) C,
+19(45° —72) Xp]— Xy
. o Vv
(1.50) = — Sin(45” ~75) [L3+\/§ g +b; =2 (cos® —sin @) +y,, +

y
b21 sin(45° —y,) +cos@5° —7,) C,
+19(45° —7,) X 1+19(45° —7,) X

2 2 2
bz _(sz _Xbl) +(yb2 _ybl)

Having solved the above equation we obtain:

_ Sp1 4/ Sp3

(1.5D b, S where:
22
' Vv cos® —sin @

(1.52) S1.= [Xpo1 COS@5° —7) — Yy SIN(45° — 7)1 N ~>

21 = [Xo21 2) = Yo 2z Sin(45° —7,) +C0s(@5°  7,)
(1.53) s. =1-(n V_o cosd —sin @ 2

22 2C_ sin(45° —7,)+Cos(5° —y,)

_ 2 2 2

(150 S23 =321+ 32 s + Vo)

8. POINT B, AND THE LENGTH OF THE b, SEGMENT

The equation of the Y, straight line which passes through the szoint is:

Y32 =198 X+ Yy, —t98 Xy,

The coordinates of B3 (sz’ yba) are determined by the following equations of straight lines:

=b1+n2b2+b3

b3 (8%) thus

Yoy (1.5)  x=L, +tV, cos®, t=t

0
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V
_ 0

(1.55) X5 —L1+(bl+n2b2+b3)—c cos®
0

\Y
(1.56) Y3 =tgB [Ly + (b, +nyb, +b3)c—°cos<1>]+ Yoz —t98 Xy

0

The coordinates of the 8253 segment are: BzBs[sz X o Vs —ybz]
VO
Xpa = Xpp = Xoa1 +b3 —cosd
o]
i \
B sin g o .
yb3 - yb2 = bel +W b3 q cosd where:
VO
(1.57) Xoqy = L1+(b1+n2b2)c—cos<1)—xb2
o]
VO
(1.58) Yb31 =tg,3[L1+(b1+n2b2)c—cosd)]—tgﬂ Xp2

[0}
2 _ _ 2 B 2
bs N (sz sz) +(yb3 yb2)
Having solved the above equation we obtain:

b _ Sa1 4/ Sa3
g = ¥

(1.59) where:
S32
i \Y
sin g o
(1.60) S, =(xb31+yb31 cosp )C—coscb
o]
\
(1.61) s, =1 (0 S0P )2
32 C, cosp
) 2 2
(1.62) Syp = Say TS5 (X +Ya)

9. POINT B . AND THE LENGTH OF THE b . SEGMENT
The equation of the Yo straight line which passes through the B3 point is:

Y42 =tg(180° — B) X+ yy3 —tg(180° — ) X3
Y2 =198 X+ Yu3 +198 Xp3
The coordinates of the B4 (xb4, yb4) point are given by the straight line equations:

_ b1+n2b2+b3+b4

Y (1.9) yg =X—Ly—[2 g—tV, (cosd—sin ®), t=t, (9%)
(o]
thus
(1.63) Yoo =—08 [ 42 g+ (b, +yby +by +by) 2 (CoSD—sin D)+ yyg +
sin f+cosf3 C,
+ 198 Xpsl
(1.64) y = - Sin—’H[L3 +2g +(by +n,b, +b, +b4)V—°(cos<D—sin D)+ Yps +
ba sin S+cos B C,
HIB Xpzl+ Yoz +198 Xp3
The coordinates of the B,B, segment are: BB, X, ~Xs + Yiu Vsl
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V
cos

X =X _=X +—’B -2 (cosd —sin @)

b4 b3 b41 Sln ﬂ_;’_cosﬂ 4 C

Y, —VY..=Y - % V —2 (cosd —sin @) where:
b4 b3 b41 Sln IB_;,_cosﬂ 4 C
cosfj
1.65 Xpag = ————[L b, +n,b, +b cos® —sin @
( ) b4l Sin,b’+cos/5’[3+\/—g+(1+ 2 +b3) 0( )+ Yps +
HYB Xpz]—Xp3
sin g \Y .

(1.66) = - P 1,429+, +n,b, +b,) —2 (COSD —Sin D) + Y, 4 +

You sin,6’+cos,8[ 3 g+ (b, +nyb, 3)C0( )+ Y3

HYB Xp3]+198 Xp3
2 _ x )2 _ 2
b, _(Xb4 sz) +(yb4 be)

Having solved the above equation we obtain:

S41 1t/ Sa3

(1.67) by = where:
Sa2
(1.68) —( ing) Yo cos®-sind
: S, =\ X, COSB—y, . sinj q < frcoss
(1.69) ,=1- (_ Cosd —sin® 2
CO sin f+cosf
(170 S _s +S (b41 y§41)

10. POINT B5 AND THE LENGTH OF THE b5 SEGMENT
The equation of the Ys, straight line which passes through the B4 point is:
Y52 =t9(90° + ) X+ Yps —tg(90° + ) X4
The coordinates of B5(Xb5’ ybs) are determined by the straight line equations:

bl+n2b2+b3+b4+b5

Y, - 1.7y, =-L,+tV _sin®, t=t = c. (10%)
_sing A
(1.7 X [L, (b, +nb, +b +b +b )—S|nq>+y JEx,
b5 Osﬂ 0
Voo
(1.72) Y, =-L,+(b +nb, +b3+b4+b5)c—smcl>
[o]
The coordinates of the B4 85 segment are: B4 Bs[xbs =X, Yos —yb4]
sin g
Xps ™ Xpa = Xps1 cosﬂb5C sin @
V -
Yoo = Vos = Yooy T 05 C—°S|nd> where:
o]
\%
(1.73) X Smﬂ[L ~(b, +n,b, +b, +b,) s +y, ]
b51 Cosﬂ

0

(1.74)

\
Yoo =L, (0, +nb, +b3+b4)c—°sin D-y,,

0
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2 _ 2 _ 2
bs - (sz Xb4) +(yb5 yb4)
Having solved the above equation we obtain:

S +1/ S
(1.75) by =+ ¥ 7

where:
Ss2
i V
B sin g o .-
(1.76) 551—(bel—xb51 cosﬁ)c_smq)
0
V .
(1.77) s, =1- (o SN® 2
52 C, cosp
2 2 2
(1.78) Sy =Sey T8, (X Vo)
THE GALILEAN TRANSFORMATION
When recalculating points A1""’A5 , Bl,...,B5 from the OXY inertial system into another

inertial system O’EQ, the Galilean transformation is applied.

[.L1.6 THE COORDINATES OF THE Ao A POINTS IN THE O'EQ SYSTEM

a
__1 . .
POINT A,.a.,), t, = c relationship (1%)
(o]
VO
(1.79) e =x —t V cosd=x_ -a —>CcosP
0
- VO -
(1.80) q,=Y, "tV smcD:yal—alC—smcD
o]
a +a, ' .
POINT Ae,,.0,,). t,= c relationship (2x%)
o]
VO
(1.81) e, =Xt V cos<1>=xa2—(a1+a2)c—cos<b
(o]
- VO -
(1.82) q,=Y,, -tV snd=y -—(a +a2)C—sm o=L,
(o]
a +a,+a, . .
POINT Ae,.0.,). t, == relationship (3#)
o]
VO
(1.83) e =x -tV cosd=x_-(a +a, +a3)C—cos<I>
o]
- Vo -
(1.84) 4,=Y, -tV sind=y —(a +a, +a3)C—sm @
o
a +a,+a +na, . .
POINT A4 (ea4,qa4) , t,= c relationship (4%)
[o]
VO
(1.85) e, =x, -t V cosd=x —(a +a +a + n2a4)C—coscD
0
- Vo -
(1.86) q.,=Y., —ta4VO sin® = You —(a1 +a,+a, +n2a4)C—S|n )

0
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a1+a2+a3+n2a4+a5

POINT A (e.0,). t.= c relationship (5%)
0o
VO
(1.87) €5 = X5 —taSV0 cosd = X s —(a1 +a,+a,+n.a, +a5)—cosd>
0o
- VO -
(1.88) U5 =Y,5 —tasv0 sind=y —(a1 +a,+a,+n.a, +a5)C—S|n D= —L4

0

L.1.7 THE COORDINATES OF THE BB POINTS IN THE O'EQ SYSTEM

b
__1 . .
POINT B,(e,,.0,,) t, = c relationship (6%)
o]
VO
(1.89) e, =X, -t V cosd=x_ -b —*>cos®d
0
- VO -
(1.90) Ay =Yy, Y, smd):ybl—blc—smd)
o]
bl +n2b2 ) _
POINT B,(e,,.4,,). t, == relationship (7%)
0
VO
(1.91) e, =X, -tV cos®:xb2—(bl+n2b2)c—coscb
[o]
- Vo -
(1.92) 4, =Yy, —tb2V05|ncD:yb2—(b1+n2b2)C—3|nCI)
(]
b1 +n2b2 +b3 _ )
POINT B,(e,;.d.,) t, e relationship (8%)
(o]
VO
(1.93) e, =X,V cos®=x_—(b+nb, +b3)C—cos<D =L
(o]
- VO -
(1.94) Uy = Vpg ~ sV, SiN@ =Y, —(b +nb, +b3)C—S|n ()
o]
b1+n2b2+b3+b4 ] _
POINT B,(e,,.d,,) t,= c relationship (9%)
(]
VO
(1.95) e,=x,-t,V cos®=x —(b+nb +b +b,)—->cos®
[o]
- VO -
(1.96) A, =Y, LV, sin®=y, —(b +nb +b +b4)C—sm @
]
b1+n2b2+b3+b4+b5 _ _
POINT 85 (ebs,qbs) , te= c relationship (10%)
o]
VO
(1.97) e, =XtV cos®=x_—(b+nb +b +b, +b )—>cosd
0
- Vo -
(1.98) Ops =Yy ~ LV, SiN®@=y —(b +nb +b +b +b5)C—S|n d=-L,

0
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[.L1.8  THE LENGTHS OF DISTANCES TRAVELED BY A RAY OF LIGHT AFTER
LEAVING THE S, SLIT AT THE ANGLE « IN THE O'EQ SYSTEM

(1.99) a :(e§1+q§1)1/2

(1.100) a,, =[(ea2 _eal)Z +(qa2 _qa1)2]1/2
(1.101) a :[(eas_eaz)z +(qa3_qa2)2]l/2
(1.102) a,, :[(ea4 _ea3)2 +(qa4 _qa3)2]1/2
(1.103) a :[(ea5_6a4)2 +(qa5 _qa4)2]1/z

[.1.9 THE LENGTHS OF DISTANCES TRAVELED BY A RAY OF LIGHT AFTER
LEAVING THE S 0 SLIT AT THE ANGLE g IN THE O’EQ SYSTEM

(1.104) b, :(e§1+q§1)1/2

(1.105) b, =[C,, _ebl)z +(a,, _qbl)z]l/z
(1.106) b, =I,, _eb2)2 +(ay, _qbz)z]l/z
(1.107) b, =IE,, _eb3)2 +(ay, _qb3)2]1/2
(1.108) b5u :[(ebS _eb4)2 +(qb5 _qb4)2]1/2

[.L1.10  THE RELATIVE DIFFERENCE OF THE DISTANCES TRAVELED BY THE
RAYS OF LIGHT REACHING ONE POINT ON THE SCREEN M

A
Lz \‘/6 7 s

FF Z,

~o _— Y
\ Vo ¥ %

S, W Eo €as Ebs Ly E
7 /

o>
0|
<) ¢ < X
ol 7 M

’ N Mo As Bs

Fig. 4  The points A5, B5 of the screen M, togaether with their coordinates €€ which
were reached by the rays of light after leaving the slit SO at the angles a, f.

The shift of the interference fringes is calculated with respect to point Mo with its coordinate
e, on the screen M.
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The coordinates €. Cs of the points AS, 85 of screen M are dependent upon the variables

a,ﬂ,@,vw, thus the coordinates € s take on the form of the following functions:

e =¢e (@®V ) relationship (1.87),
€ =8 (ﬂ,CD,VW) relationship (1.97),
\Y
where: vV =2 .
w o C

The interference of the rays of light which have left the slit S0 at the angles a, f will only
take place on the screen M (fig. 4) when points A5 and B5 coincide. This means the coordinates
are equal: €. =€
The relative difference of distances traveled by the rays of light in a vacuum is:

AI0 /lo :[alu +a, +a, +a —(blu +b3u +b4u +b5u )]lﬂp0

The relative difference of distances traveled by the rays of light in the PP plate is:
Alplﬂpp:(a4u—b2u)/Ap where:

A =1 1In relationship (1.4)
p o 2

Thus the total relative difference of distances traveled by the rays of light:
Al/A =Al 1A +Al 14
0 o "o p p
After transformation of the relationship we obtain:
(1.109) Al //1o =[alu +a, +a, +na, +a. —(b1u +n2b2u +b3u +b4u +b5u )]//10
Let us introduce a symbol RWI
(1.109a) R =Al/A
w 0
The relative difference of distances RW depends upon the variables a,,B,(D,VW and therefore

it is defined by the function:
(1.109b) R, =R (&.8,0V )

We need to calculate the RW value at any Mo point with its coordinate e, on the screen M,
given the angle @ = CDn and at a fixed value VW :Vo /C0

In order to do this we write the following equations:

(11%) ea5 :eaS(an’ch’Vw):eo

(12%) eb5:eb5(’8n’q)n’vw):eo

Then by applying the appropriate computational software, we can compute such a pair of
angles (an,ﬂn) which satisfies the equations (11%) and (12%). Knowing the pair of angles

(an,,b’n) at fixed values of an,VW we calculate the value of RWI

(1.109¢) R,=Al/A =R (a ,p @ .V )

[.L1.11 THE DIFFERENCE IN PHASES OF THE LIGHT RAYS REACHING ONE
POINT ON THE SCREEN M

Reaching one point on the screen the light rays may be identical or may vary in their phases.
The phase difference A of the light rays equals:

(1.110) Ap =27 frac(R,)
where :  frac(R,) is a function denoting the fractional part of the vaalue.

22



[.1.12 THE INTERFERENCE FRINGES SHIFTS’ VALUES

On the screen M let us select a point Mo (Fig. 4) with the e, coordinate (a fixed line in the

telescope), in relation to which we will calculate the shift of interference fringes.

Corresponding to both the angle (D=d>1 =0 and the coordinate e, the pair of angles (al,[)’l)

satisfies the following equations:
€5 =Cu (@) @V, ) =8,
ebs:ebs(,Bl,cI)l,VW):e0 SO
(1.111) R,=R (a,B,®.V)

Corresponding to both the angle ¢>=(D2 and the coordinate e, the pair of angles (az,ﬂz)

satisfies the following equations:
€5 =€, (2, @,V )=¢

€ =855, @,V )=¢ SO
(1.112) R, =R (a,8,®,V )

Leaving the slit S,at angles (al,,b’l),(az,ﬂz) the rays of light reach the Mo point of the e,

coordinate.

Calculated with respect to the Mo point, the value k of the interference fringe shift depending
upon the angle <I>2 and a fixed value VW 1s given by the following:

(1.113) K(®,,V,,) =Ry, — Ry

The formula (1.113) can be applied to calculate the values of interference fringe shifts with
respect to any Mo point on the screen M, after rotating the interferometer by any angle d)z

and with the VW =V0 /Co fixed at any value.

Tables 2 — 7 give the values of the interference fringe shifts with respect to point Mo of the
coordinate
ey = 0.1508323849500 m for different values of ®_,V .

The calculations were carried out using PROGRAM abIM presented in Chapter IV of this work.

In the calculations — the relative approximations of points As, Bg to point M, are described
by the following inequalities of coordinates (Fig.4):
| (45 —€0)/ A, <1077, | (eps —€9)/ Ay | <1077

The abovementioned approximations of points A5, BS, M, are presented in tables 1 to 7.
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€y =0.1508323849500 m VW =V0 /CO
® =0 R, =R (2.8,0,V)
1 2 3 4
VW a, ,Bl RWl
— rad rad _
5.10° | 39927724200 -10~° | 35979062811 -10~° | 3002.131191320
10* | 4.0401177788-10~° | 3.5999661255 -10~° | 3002.131389021
1510 | 4.0874626306-10° | 3.6020261381 -10° | 3002.131715822
2.10% | 4.1348069753 -107° | 3.6040863191-10~% | 3002.132187332
5.10% | 4.4188623939-10% | 3.6164509390 -107° | 3002.137796524
10° | 4.8922475042 -107° | 3.6370720997 -10~% | 3002.157966110
1072 | 13404460634 -1072 | 4.0111245783 -10~° | 3005.035276114
0.1 9.7524614853 -1072 | 8.0443961357-107° | 3591.873337429
TABLE 1
Relative differences of distances Ry =Ry (ay, £, ®1,Vy,) at ©=d =0

€y =0,1508323849500 m VW :VO /C0
@, =7zl4 R, =R (a,8,®,V) k(®,,V,) =R, —Ry
1 2 3 4 5
v, a, B, wo k (@,V,)
- rad rad — _
5.10° | 3.9808002849 -10~% | 3.6312205475-10° | 3002.131123494 | _g 7826 .107°
107* | 4.0161740048-10% | 3.6665944817 -10~° | 3002.131130047 | _ 5897.107*
15107 | 4.0515477145-10"% | 3.7019684075-10~° | 3002.131130624 | _5 8519.107*
2.107* | 4.0869214137-107% | 3.7373423250-10°% | 3002.131127927 | _1 0594.107°
5.107% | 4.2991633943-10~° | 3.9495856587-107° | 3002.131133321 | _ ¢ 6632.107°
107° | 4.6528992281-10° | 4.3033239157-10°% | 3002.131122723 | _  6843.1072
102 | 11020022430-107% | 1.0670526531-1072 | 3002.127546019 | —2.9077
0.1 7.4730696699 -1072 | 7.438571775-1072 | 2998.359887719 | —593.5134
Values of RWl = RW (al,ﬂ1,®l,vw) are presented in Table 1
TABLE 2

Values of the interference fringe shifts k((DZ,VW)
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€y =0,1508323849500 m VW :VO /C0
D, =7/2 R, =R, (@, 8, ®,V, ) k (@,V)=R -R_
1 2 3 4 5
Vw 0{2 ﬂz w2 k ((DZ’VW)
- rad rad — _
5.10° | 3.9481063201-10~% | 3.6438135238 -10~% | 3002.131174750 | _1 6570 -107°
104 | 3,9507858220 -10~° | 3.6917808334 -10~° | 3002.131358381 | _3 0640 .107°
1.5-10™ | 3.9534650605 -107° | 3.7394485340 -10°° | 3002.131651654 | _g 4168 -10°°
2.10% | 3.9561440353 -10~% | 3.7877166255 -10~° | 3002,132074803 | _1 1252 .107*
5.10% | 3.9722123456 -107° | 4.0755333837-10~% | 3002.137086849 | _7 0967.10°*
1073 3.9989717621 -10° | 4.5552592553.1073 | 3002.155067484 | _2 8986.1073
1072 44761228482 10 | 1.3197013721 -1072 | 3004.654317494 | —0.3809
0,1 No light interference.
Values of RWl = Rw(al,ﬁl,cbl,vw) are presented in Table 1
TABLE 3
Values of the interference fringe shifts k(CDZ,VW) at ®,=x/2.
€ = 0 .1508323849500 m V =V /C
w 0 0

D, =-7xl4 R, =R, (@, B,®, V) k (@,V)=R -R_
1 2 3 4 5
v, a, B, R, k (@,V,)
- rad rad — _
5.10° | 3.9770099624 -107° 3.5633856451 -10~° | 3002.131245467 | 5 4147.10°°
10* | 4.0085926102 -10° 3.5309252527 -10~° | 3002.131621789 | 2 3276.107
1.5-10* | 4.0401744976 - 102 3.4984654283 -10~% | 3002.132255159 | 5 3933.107*
2.107* | 4.0717556242 -10°° 3.4660061717 -10° | 3002.133149623 | 9 6229.107*
5107 | 4.2612264039 107 3.2712625612 -10° | 3002.143733676 | 5.9371.10°°
10 | 4.5769500845 -10° 2.9467354079 -10~% | 3002.181635327 | 2 3669.1072
1072 | 1.0246766501 -1072 | —2.8848934357 -10~° | 3007.295667190 | 2.2603
0.1 | 6.5318706130-1072 | —5.9987865247 - 1072 | 3656.388665504 | 64.5153
Values of RWl = Rw(al,ﬁl,(l)l,vw) are presented in Table 1
TABLE 4

Values of the interference fringe shifts k(CDZ,VW) at
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€p =0.1508323849500 m VW :VO /C0
D, =—7/2 =R (@, B, @,V ) k(@,V)=R -R_
1 2 3 4 5
v, a, B, R, k (@,V,)
- rad rad - -
5.107° | 3.9427465247 -107° | 3.5478800773 -10~° | 3002.131185539 | _5 7810 -107°
10 | 3.9400662317 -107° | 3.4999139404 -10° | 3002.131360117 | _2 8904 .107°
1.5-10* | 3.9373856748 10~ 3,4519481943 -10~° | 3002,131657823 | _5 7999 .10°
2.10™ | 3.9347048543 -10° 3.4039828393 .10~ | 3002.132070757 | _j 1657 -107*
5.10™* | 3.9186143951 -107° 3.1161989182 -10~% | 3002.137057367 | _7 3915.107*
10° | 3.8917758758 -10~° 2.6365903231-10~% | 3002.154764384 | _3 2017 .107°
1072 3.4041833711-10° | —5.9896769791 -10~° | 3004.355161566 | —0.6801
01 ~1.9309811291-107° | —9.1514853874 -1072 | 3024.098078500 | —567.7752
Values of Rm = Rw(al,ﬁl,d)l,vw) are presented in Table 1
TABLE 5

Values of the interference fringe shifts k((Dz’Vw) at ®,=—-7x/2.

When the interferometer’s relative speed reaches the value of V,, = 2 107 (see Table 2), the
shift of interference fringes takes its maximum value of | k | =1.0594-10~%. At any lower
relative speed values V,, < 2-10™ the shifts are not observable.

The value of the interferometer’s relative speed cannot be lower than the value of the Earth’s

relative rotation speed, which is about 107*. Hence the relative speed of the interferometer
located on the Earth’s surface takes values within the following range:

(1.114) 10 < v, <210
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[.1.13 VALUES OF THE INTERFERENCE FRINGE SHIFTS AFTER CHANGING
THE MIRROR-SLIT DISTANCE

We will calculate the values of the interference fringe shifts with respect to the Mo point at a
given angle (Dn after the distance between the mirror 22 and the slit SO has been changed.
The distance L2 is replaced by the distance L2 +AL2.
A pair of angles (az,,Bz) , which corresponds to: the angle ® =CDn , the coordinate e, and the
distance L,, satisfies the following equations:

ea5 :ea5 (az’q)n’vw) :eO

€5 = €5 (B @1V, ) =8,
The relative difference of distances traveled by rays of light equals:
(1.115) R =R (a,,p,.,® V)

w2 w 2 2 n w

A pair of angles (& ), which corresponds to: the angle ® :(Dn , the coordinate e,

2AL2" B 2AL2
and the distance L2 +AL2, satisfies the following equations:

’(Dn'VW'ALz) =€,
€5 = €5 (Fpu o2 @iV, AL, ) =€,
The relative difference of distances traveled by rays of light equals:

(1.116) Ruzatz = Ru(@opn0 Popn @Y, AL,)

The rays of light leaving the slit S, at angles (az,ﬂz) and (a ) reach the Mo point on

2AL2’ﬁ2AL2
the screen M.
Depending on the distance increment AL2 the k wvalue of the interference fringe shift with

respect to the Mo point equals:

(1.117) k=k(®n’VW’AL2)=Rw2AL2_Rw2

In Tables 6 and 7 the values of interference fringe shifts were given with respect to the Mo
point of the coordinate e, =0.1508323849500 m at the distance L2 +1.25-/1O and at the angles

an =x/4 and @n =xzl/2.

MEASURING LENGTH WITH THE MICHELSON’S INTERFEROMETER

The evaluation of the measured length.

AL, the real length,
ALy =(k/2) A, the length determined with the physical model,

In the mathematical model the length AL2 1s known by assumption, whereas in the physical

model the length AL2 is the length that is measured.
The accuracy of the measured length AL; is specified by the following formula:

| AL- ALy
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€y = 0,1508323849500 m L,=12m AL, =1.25- 4, v, =V IC,
 =0,=7/4 Rooarz = Ru(@ou 00 Bop o Py Yy ALY)
k=k(®@,.V, AL} =R, 02 " Rus
1 2 3 4 5
VW a2AL2 ﬂZALZ RWZALZ k
- rad rad — _
5.107° | 3.9807980798 -10~° | 3.6312205475-10~° | 3004.631105534 | 2.4999
10 | 4.0161717998-10% | 3.6665944817 -10~° | 3004.631112083 | 2.4999
1.5-10™ | 4.0515455094-10~° | 3.7019684075-10~° | 3004.631112664 | 2.4999
2107 | 4.0869192088-10~% | 3.7373423250 -10~° | 3004.631103798 | 2.4999
510 | 4.2991611891-10% | 3.9495856587 -10~° | 3004.631109196 | 2.4999
10 | 4.6528970232-107° | 4.3033239157 -10~° | 3004.631104763 | 2.4999
1072 | 1.1020020223 -1072 | 1.0670526531-1072 | 3004.627534225 | 2.4999
Values of sz = Rw(az,ﬂz,cbz,vw) are presented in Table 2
TABLE 6
Values of the interference fringe shifts k = k(CI)Z,VW,ALZ) = RWZALZ —RW2 at CI)n :<I)2 =xl4.
e = 0.1508323849500 m L,=1.2m AL, =1.25- 4, v, =V IC,
e =0, =72 Rouzare = Ru(@opz Bopyr @iV, AL)
k=k(®,V ,AL)=R_ -R
1 2 3 4
VW aZALZ 'BZALZ RWZALZ
- rad rad — —
5.107° | 3.9481041137-10° | 3.6438135238 -10~° | 3004.631162956 | 2.4999
10 | 3.9507836142-10"° | 3.6917808334 -107° | 3004.631340421 | 2.4999
1.5-10™ | 3.9534628511-107° | 3.7397485340 -10~° | 3004.631639860 | 2.4999
210 | 3.9561418243 -10~° | 3.7877166255 -107° | 3004.632056843 | 2.4999
5107 | 3.9722101257-10% | 4.0755333837.107° | 3004.637068890 | 2.4999
10 | 3.9989695271-10° | 4.5552592553 -10~° | 3004.655043356 | 2.4999
102 | 4.4761203444-10° | 1.3197013721-107% | 3007.154293369 | 2.4999
Values of sz = Rw(az,ﬁz,d)z,vw) are presented in Table 3
TABLE 7

Values of the interference fringe shifts k = k(CDZ,VW,ALZ) =R
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An Example.
The accuracy of the measured length.

Tables 6, 7:
k~2.4999, AL,=1.254,, AL;=(k/2)/, .
AL, -AL 1.25 — 2.4999/2) 4
So [l S R o 4105
AL, 1.254,

[.2 WHY WERE THERE NO SHIFTS OF INTERFERENCE FRINGES OBSERVED
IN THE MICHELSON’S EXPERIMENTS?

The relative speed VW of the interferometer located on the Earth is specified by the
relationship (1.114): 10*< v, <210"
Within this range of relative speeds VW, the shift values are very small | k | < 1.0594-107°

(see Table 2), hence non—observable.

[.3 WHY WAS ‘“THE VALUE OF THE INTERFERENCE FRINGES SHIFT’ CALCULATED BY
ALBERT MICHELSON NOT CONFIRMED DURING THE EXPERIMENTS?

With the aim of calculating the values of the interference fringe shifts, Albert Michelson
considered the mutually perpendicular rays of light that were reaching the Zl, 22 mirrors.

This happens when the rays of light leave the slit SO at the angles =0, f£=0.
Table 8 contains calculations which indicate that the rays of light that leave the slit SO at the
angles a=0, f=0 reach distant points A5, B5 of the screen M. The distance between the

two points amount to over one thousand wavelengths of light, therefore no interference of the
light waves occurs.

Let us introduce the following symbols:

(1.118) Rrw = RrW(GD,VW) =Al /ﬂo the relative difference of distances traveled by the
rays of light, reaching distant points A5, 85 of the

screen M in the O’EQ system,

(1.119) K =R _(®_V )-R (®_,V ) the difference of relative differences of distances
r rw 2 w rw 1 w
R

w '
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In accordance with the results of calculations contained in Table 8 at CI)2 =x/2 and VW =107%,
the Kr takes the value:

K, =Ry (®5,V,) = Ry (®,V,,) = 2996.1948224790 — 2996.2355474159 = — 0.040724 .

The calculated value of K, =-0.040724 is not the shift value k. The distance | €€ |

between the points Asand Bg on the screen M which were reached by the rays of light
equals: 1168.0425749 A, when ®, =x/2 and 1981.41514514, at @, =0.

It is evident that by assuming perpendicularity between the light rays and the Z L z 5 mirrors,
Albert Michelson actually calculated the value of | K, | ~0.04 (1.119) and not the shift
value k (1.113).

V =v /C =10"*
w 0 0
a =0, p =0 Kr =RrW(CD2,VW)—RrW(CDl,VW)
1 2 3 4 5
CDl eas(azo,d)l,vw) ebS(ﬂzo,d)l,VW) | e. e, | /Ao Rrw(d)l,vw)
rad m m — —
0 0.14016934707 0.1413383820 1 1981.4151451 2996.2355474159
d)z eas(a:O,CDZ,VW) ebs(ﬂ:O,CDZ,VW) | e. €. | /ﬁ,o RrW(CDZ,VW)
rad m m — _
wl2 0.1404053264 5 0.1410944715 6 1168.04255749 2996.1948224790
TABLE 8

The table presents the values of: R (®,,V ), R (®_,V )and |e _-e _|/A together with
rw 1" w rw 27w ab b5 o}
the coordinates €. € of the A5, 85 points reached by the light rays that have left the slit S0

at the angles =0, £=0 and v, :VO /CO =10"*. These calculations were carried out with

the computational program PROGRAM IntM (see Chapter IV).

[.4 THE VELOCITIES AT WHICH THE CENTERS OF THE EARTH AND THE SUN TRAVEL
WITH RESPECT TO THE AETHER
(in relation to a specific absolute OXoYoZo system)

In relation to the aether, the interferometer velocity \70 on the Earth’s surface is the sum of

three vectors:
(1.120) V =V +V_+V
(o] r Ay se
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The vector \7r is the peripheral velocity of a point i.e. a place on the Earth’s surface where

the interferometer (observer) is located. The plane of this vector is parallel to the one at the
equator.
Its modulus value equals: V, =0.464cose km/s, where:

@ s the latitude of the interferometer’s position.

The vector \7ZS is the velocity of the Earth’s center around the Sun. This vector is located on

the Earth’s ecliptic plane.

Vemin =29.29 km/s Viemax =30.28 km/s

In our considerations an approximate modulus value of the vector \7ZS will be adopted, namely
V,, #30 km/s

(1.121) VvV _/C ~107

The vector \75e is the velocity of the Sun's center with respect to the aether. This vector is

perpendicular to the ecliptic plane, which is conclusive from starlight aberration.

The vector \7r can be omitted due to its small modulus value compared to that of the\7ZS vector.

Consequently the equation (1.120) takes the following form:
(1.122) \70 z\?zs +\7se

Since the vectors \7ZS,VSe are mutually perpendicular, the following equation can be written:
(1.123) VZaVZ24v?
0 58 se
According to (1.114): 10 < V,, < 2.107%, VW :VO /C0 and therefore
(1.124) 10*< Vv, /C, <2107
The interferometer is located on the Earth’s surface so its velocity \70 1s equal to the

velocity of the point on the Earth’s surface (a laboratory) with respect to the aether, which is

approximately the velocity VZe of the Earth’s center with respect to the aether:

(1.125) \70 z\72e
After considering the inequality (1.124) we obtain:
(1.126) 10*<V,/C, <210, V,, ~V,

This inequality (1.126) specifies the speed of the Earth’s center relative to the aether,
expressed with respect to the speed of light C,.

The speed Vg, of the Sun center with respect to the aether can be determined from the four
relations i.e. (1.121), ((1.123), (1.125) and (1.126).

From the equation (1.123): Vsi zVOZ —VZZS
and the equation (1.125) we obtain:
V2 aVv2_y?
se = e 8
consequently after applying (1.121) and (1.126), we further obtain:
(1.127) 0<V,/C,<173-10"*

The inequality (1.127) specifies the speed of the Sun’s center relative to the aether,
expressed with respect to the speed of light C, .
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I.b THE VELOCITY AT WHICH THE CENTER OF OUR GALAXY TRAVELS
WITH RESPECT TO THE AETHER
(with respect to a specific absolute OXoYoZo system)

With respect to the aether, the center of the Sun travels at the velocity \7Se which is the sum

of the following vectors:

(1.128) v =\75 +V

se g ge

The vector \759 is the velocity with which the Sun center rotates around the center of our
Galaxy. It takes an approximate modulus value of: Vg =250 km/s

(1.129) v, /C, ~833-107"

The vector \7ge is the velocity at which the center of our Galaxy moves with respect to the

aether.

From the equation (1.128) we obtain:
(1.130) V =-V 4V
ge sg se

Then from (1.127), (1.129) and (1.130) we can determine the speed Vge of the Galaxy

center with respect to the aether:
(1.131) (8.33-1.73)-10* <V, /C, <(8.33+1.73)-10~*

The inequality (1.131) specifies the speed of the Galaxy center relative to the aether,
expressed with respect to the speed of light C, .

Knowing the apex Ay (dsy,asg

) of solar motion around the Galaxy center, we can estimate
approximately the apex Age (0

o =~-0 |,
ge sg

ger %ge) Of the Galaxy center’s motion with respect to the aether:
a ~a +180°,

ge " sg
where: 539,5ge declination of apexes,

a2, right ascension of apexes.
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CHAPTER 1I

THE VELOCITY OF THE INTERFEROMETER

The interferometer absolute velocity V0 i1s the sum of three vectors:

V =V +V_+V as in relation (1.120)
0 r S se

where: \7r peripheral velocity of the point U on the Earth’s surface where
the interferometer (the observer) is located,
\7ZS the velocity at which the Earth’s center revolves around the Sun,
vV the velocity at which the Sun’s center travels relative to the aether.

The aether-relative velocity \7se of the Sun center is perpendicular to the plane of the ecliptic.

However, the direction of that velocity (a vector) is not known. Hence in our deliberations, we
will consider two vectors perpendicular to the ecliptic plane, namely:

vector V. and vector V _=-V (Fig. 8).
se sel se
Thus two vectors are obtained:
(2.1 Vo, =V, +Vj +Vg,
(2.2) V_ =V +V_+V
02 r s sel

Therefore the interferometer absolute velocity VO Is:
either the vector \70 =\701 or the vector V, =V,

In this chapter the coordinates of the vectors \701 and V02 were established in the

horizontal coordinate system.
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[I.1 THE PERIPHERAL VELOCITY \7r OF THE U(g,A) POINT ON THE EARTH’S SURFACE

Fig. 5 Peripheral velocity \7r and its azimuth Ar
SYMBOLS:
1 the globe,
2 the celestial meridian of the observer,

U(p, A) a location (point) with geographical coordinates ¢, 4,
at which the interferometer (the observer) has been located,
Ip a vertical line which runs through the point U (¢, 1) and the center of the globe O,
pha the plane of celestial horizon i.e. its projection, which runs through the globe
center O and is perpendicular to the vertical line Ip,

ph the plane of the horizon i.e. its projection, which runs through the point
U (@, A) and is perpendicular to the vertical line Ip,
N the northern point of the horizon,
S the southern point of the horizon,
N,S, line the line of intersection between the horizon plane and the celestial meridian

plane, both of which run through the U (¢, 1) point,
R the radius of the globe,
A, the azimuth of the Earth’s peripheral velocity V

re

The peripheral speed V, of the point U (g, 1) :
(2.3) V., =wRcosgp, where:

w the angular speed of the Earth’s rotation.

The peripheral velocity \7r is located on the horizon plane which runs through
the point U (p, ).
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[I.2 THE VELOCITY \7Zs AT WHICH THE EARTH’S CENTER REVOLVES AROUND THE SUN

)/

5 5

Fig. 6 The Earth’s motion on its orbit around the Sun.

SYMBOLS:
a an average Earth—Sun distance,
b a small semi-axis of the Earth’s orbit,
r a radius vector,
14 true anomaly,
74 an angle A(r,st),
p annual precession within ecliptic (in longitude),
e the eccentricity of the Earth’s orbit,
Sn the center of the Sun,
Pz a point on the orbit in which the center of the Earth is located,
\7ZS the velocity at which the center of the Earth revolves around the Sun,
Al Winter’s position (Earth’s location when astronomical winter starts),
A2 Summer’s position (Earth’s location when astronomical summer starts),
B1 Earth’s location at the time of spring equinox,
Bl Earth’s location at the time of spring equinox of previous tropical year,
B2 Earth’s location at the time of autumn equinox,
No Earth’s location at the beginning of a new calendar year of the UT time,

uT Universal Time.

B1'A2 spring, A2 B2 summer,
B2 A1 autumn, Al B1 winter.
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I1.2.1 DETERMINING THE w ANGLE

In the OX1Y1 system the coordinates of the Earth’'s center on the orbit are defined as follows:
acosv (1—e?) r— a(l—e?)

(13x*) X, =ea-+r cosv =ea+ , =
1+e cosv l+ecosv

asiny (1-e?)

(14%) y, =rsinv=
1+e cosv

The equation of the line tangent to the Earth’s orbit in the P (xZ : yZ) point is:

XX Yy
1z 17z _ _ 2 _ 2
¥; + 2 =1, b=,a°—(ea)
. . b?x, ~ p2
After transformation we obtain: y, =-— LX +—
1 aly 1y

7 z
Thus the angular coefficient of the line tangent to the orbit in point PZ (XZ, yZ) equals:

2

(154 tgn, = _:sz —_ (/a2 e
z Z

Applying equations (13%), (14%) we obtain a quotient:
X _¢® d+e c05v)+i
y, sinv (1-e?) tgv

From the equation (15%) we obtain:

(2.4) 5. = arctg [—(b/a)z(w+i 1,  ve0, v=180°,  v=360°
8 siny (1-e?) tgv
(2.5) n,=In,| (Fig. 6)
(2.6) n_ = arctg b (Fig. 6) So
0 ea
2.7) y=v, when 0<v <180° -1,
(2.8) y=v-mn, when 180° —17, <v <180°
(2.9 y =-180° +v+7, when 180° <v < 180° +17,
(2.10)  w=-180°+v-n, when 180° +17, <V <360°
where: v true anomaly (Fig. 6).

[1.2.2 DETERMINING THE V ANGLE

The true anomaly v is the angle between the radius vector r and the direction from the Sun
center towards the point on the orbit nearest to the Sun i.e. the perihelion.

Corresponding to a specific time, the v angle can be determined from the Kepler second law:

r? dv_ C. = const
dt 1
1—e? .
r =M (the modulus of the radius vector)
1+ecosv

From the above the following integral is obtained:

() = [al-e?)]? dv

C, (1+ecosv)?
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After integration we have:

—g2)1? i [1_ a2
211) t(V):[a(l e)] [_ 2esmv N 12 ( 2 arctg 1-e tg(v/2))]_|_C
C, (l-e®)(l+ecosv) 1l-e 1—g?2 l+e
Let us adopt an initial condition:
v=0 = t=0, hence the integration constant C2 =0, so
() = az(l—ez)e( 2 arctg Vi-etg(v/2)  sinv
C1 ev1—e? l+e l+ecosv
Tr
From the condition that v=180° = t(v) :Tg where: Trg is the stellar year, we can
determine the Cl constant
T 2 1_ 2
ﬁ:ae( e’) 2 z hence:
2 Ci eyl _e? 2
201 a2
(2.12) C, _2ratie) then
Tgvl-e?
evi-e? T, 2 Vi-e? tg(v/2) sinv
(2.13) t(v) = ( arctg -
2r e /1—e2 l+e l+ecosv

The t(v) function is of negative value when v >180° .

In order to avoid negative time values we introduce two functions:

(2.14) t,(V)=t) when 0 < v <180°
(2.15) t, () =T, +t() when  180° <v < 360°
Then we define the following symbols:

TrZ tropical year

TZ the duration of astronomical winter.

T :'[1(900 —774)+Trg -t (360° -1,) (Fig. 6) which after transformation

T =t(90° ~77,) ~t(360° —7)
Angle n,=n+Ap  (Fig. 6), where:

(2.16) Ap=(T,/T,)p precession in the ecliptic (in longitude) during the time of
astronomical winter.

Therefore

(2.17) T, =t(90° —Ap—7,) —t(360° —7,) .

If the astronomical winter duration time T is known, the n, angle can be determined from

the equation (2.17) by the method of successive approximations.
Let us say that T, means the time which has elapsed from the moment the astronomical

winter of the UT time started (point A1’ Fig. 6) up to the moment the Earth is nearest to the

Sun (the perihelion).
T, can be determined from the relationship:

T, =T,y —t,(360° —7;) =—(360° —17,) =t ()
(2.18) Ta Zt(’h)

Then let us say that T, means the time which has passed from the start of astronomical

winter up to the end of a calendar year of the UT time (point No, Fig. 6).
Ty, <T,
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The difference of the T,,T, times equals:
Ta—Ty =Trg _t2(3600 —175) -

After transforming the equation, the following is obtained:
T, =Ty =—1(360° —75) =t(175) SO

(16%) T, —T, =t(75)

Referring to equation (2.11) and adopting an initial condition:
v=—n; = t(¥)=0

with a constant value C1 specified by the relationship (2.12),

an integration constant C2 can be calculated:

evi-e?T . 2 Vi-e’tg(n, /2) sin 77,
9

C. = 9 ( arct - )=t ,
2 27 ev1—e? l+e 1+ecosr, 1)
C, =t(n,).
Having considered the equation (16*) we obtain:
Now we can specify the relationship between the UT time and the v angle i.e. true anomaly:
(2.20) t;(V) =t(V)+ (T, -Tp) when 0 < v <180°
(2.21) t, (V) =Ty +t() + (T, —Tp) when  180° <v <360°

From equations (2.20) and (2.21) the value of the v angle for any given time UT can be
calculated with the use of the method of successive approximations.

[I.2.3 AZIMUTH AND THE ALTITUDE OF THE EARTH’S CENTER VELOCITY \7ZS
The definitions that follow refer to to the following vectors: \7Zs , \7Se and \7561 = —\75e.

The \7se and \7$e1 vectors are also the velocities of the Earth’s center.

The declination § of a vector is the angle between the vector and the plane of the celestial
equator.

The Greenwich hour angle GHA of a vector is a dihedral angle between the semi-circle of the
celestial meridian in Greenwich and the hour semi-circle which runs through the vector. The
GHA angle counting starts at the semi-circle of the celestial meridian in Greenwich and up
towards the West.

The local hour angle LHA of a vector is a dihedral angle between the celestial meridian
semi-circle of the observer and the hour semi-circle which runs through the vector.

The right ascension « of a vector is a dihedral angle between the hour semi-circle which
runs through the spring equinoctial point i.e. the Aries point and the hour semi-circle which
runs through the vector. The right ascension counting starts at the Aries point up towards the
East.

The altitude H of a vector is an angle between the vector and the horizon plane.

Starting from the northern point of the horizon, the azimuth A of a vector is a dihedral angle
between the celestial meridian of the observer and the semi-circle which runs through the
vertical line and the vector; whereas starting from the northern direction (N, , Fig. 9) the
azimuth A of a vector is an angle between the NS, line and the projection of the vector on
the horizon plane that runs through the point U (g, ).

The observer is located in the same place as the interferometer.
The above definitions correspond to the definitions which refer to celestial bodies.
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Fig. 7 Coordinates of the equatorial system: declinations, right ascensions.
SYMBOLS: (0] the center of the globe,
1 celestial equator,
2 ecliptic,
3 celestial zone,

5 hour semi-circles,

n the center of the Sun,
PB the Aries point,

& inclination of the ecliptic to the equator,

a right ascension of the Sun,

S declination of the Sun,

a, right ascension of the V, velocity,
5, declination of the V, velocity,

7 an angle «(r,V,y) relationships (2.7 = 2.10)

From two perpendicular spherical triangles, shown in Fig. 7, the right ascension a as well

as the declination 5ZS of the Earth’s center velocity \7ZS will be determined.

tgar =tgkl cose, hence

tga
(2.22) k, =arctg cosjc when 0<a <90° (228a)
tga
(2.23) k =180° +arctg —> when 90° < <270°
1 cos¢ s
g
(2.24) k =360° +arctg —> when 270° < <360°
1 cosée s
(2.25) k,=k - (Fig. 7).
9o =tgk2 cose , hence
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(2.26) a  =arctg(tgk, cose) when -90° < k, < 90°

(2.27) a,, =180° +arctg (tgk, cose) when 90° <k, <270°
sing__ =sink_sing, hence
zs 2
(2.28) 8 =arcsin (sink, sin )

If the value of a4 is very small, then y ~90°,9286 as the true anomaly v z760,846.
The interval (2.26) is satisfied if k, > frac(y) = frac (90.9286) ~ 0°.9286 .
a, = arctg(tg0°.9286 cose) ~0°.852. Hence the interval (2.22) takes the form as follows:
(2.28a) 0°.852 <, <90°
The angles in the equatorial system which are necessary to determine the coordinates of the

vector \7Zs in the horizontal system are:

(2.29) GHA =GHAaries—a
LHA =GHA +A SO
5 5
(2.30) LHA =GHAaries-a +1 , where:

GHAaries Greenwich Hour Angle of the Aries Point,
GHA Greenwich Hour Angle of the \7Zs velocity,

zs

LHA Local Hour Angle of the \7ZS velocity,

S

Oy right ascension of the \7ZS velocity,
y) longitude of a place (point U, Fig. 5) where the interferometer (the observer)
Is located.

The altitude H ”s of velocity \7Zs in the horizontal system:

sinH = cosé)‘ZS COS @ COS LHAZS +sin 525 sing, where:
@ the latitude of a place (point U, Fig. 5) where the interferometer (the observer)
Is located. Hence:
(2.31) H, = arcsin(cos5ZS CospCOSLHA +sin o, sin @)

The azimuth AZS of velocity st’ calculated within the range from 0 to 360° starting from

the northern point of the horizon, is expressed as:

. — C0S O .
sin A, = ———= sin LHA, supplement (S.31).
cos H
sind_ —sinH_sing
COsA = ) =
zs cosH_ cosg

Let us introduce the following symbols:
sin S —sinH ’ sing

(2.32) d = , (d,,=cosA_)
25 cosH _cose zs
(2.33) z =d /ld |, A, #90°, A, #270°. Therefore
C0so
(2.34) A =90°(3+z )-z_arcsin ( 5 sin LHA )
s S s COSH s

S

[1.2.4 THE SPEED V. AT WHICH THE EARTH’S CENTER REVOLVES AROUND THE SUN

The speed VZs at which the center of the Earth revolves around the Sun can be calculated

v

from the Kepler second law: r m L
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. d
We can write  r(r d_lt/) M=CM, where: M the mass of the planet.

r i—‘t/ =V, cos( iy —90%) =V, sin(180° — y) , SO
(17%) r V,, Msin(180° - ) = C, M

The left-hand side of the equation (17%) expresses the modulus of the planet’s angular
momentum (Fig. 6). From the equation ( 17%) we obtain:

C 201 a2
= 1 where: C, :M relationship (2.12),
rsiny Ty V1-e?
1-e? )
r :M the modulus of the radius vector,
1+ecosv
angle w relationships (2.7 - 2.10),
Hence T stellar year.

g

(2.35) V,, = 2za(l+e cosv)

TgV1-€? siny

1.3 THE VELOCITIES \7Se AND \7Se = —\7Se AT WHICH THE SUN CENTER MOVES WITH
RESPECT TO THE AETHER

30

Xse 4290"

PB

Fig. 8 The coordinates of the vectors \7Se and \7Sel =—\75e (declinations, right ascensions).

The \7Se and \7391 vectors are also the velocities of the Earth’s centre.
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SYMBOLS IN FIG. 8:

0 the center of the globe,
1 plane of the celestial equator (its projection),
la the celestial equator,
2 plane of the ecliptic (its projection),
& the inclination of the ecliptic to the equator,
PB the Aries point,
Ve, the velocity at which the Sun center moves with respect to the aether,
Ve = Ve the velocity at which the Sun center moves with respect to the aether,
oo right ascension of the \7Se velocity,
122 right ascension of the \7861 = —\7Se velocity.
Vector Modulus of the Right ascension of | Declination of the
vector the vector vector
Vee Vee a  =270° (-90°) 5 =90°—¢
se se
vV v _90° —(90° —
sel se asel 90 6se1 (90 S)

TABLE 9 (refers to Fig. 8)

The following relationship specifies the speed of the Sun’s center relative to the aether,
expressed with respect to the speed of light C,:

0 < Vg,/Cy<173.10™* (1.127).

I1.3.1 AZIMUTH AND THE ALTITUDE OF THE \7Se VELOCITY

The Local Hour Angle LHAse of the \7Se velocity:
(2.36) LHA  =GHAaries—a_ +1

The altitude H Se of the \7se velocity:
(2.37) H =arcsin(cosd_ cosgcosLHA +sind_ sin @)
se se se se

The azimuth of the \7$e velocity, calculated within the range from O to 360° starting from the

northern point of the horizon is:

_ —-C0SS_
sinA =—— € sin LHA
¢ cosH se

e
se

sind_—sinH_sing
Se se

COSA =
se cosH (o COSP

Let us introduce the following symbols:
sin 556 —sin Hse sin g

(2.38) d = , (dg=cosA )
se cosH  cosp se
(2.39) z =d_/ld_I, A, #90°, A, #270°. Therefore
C0so
(2.40) A =90°@3+z )-z_arcsin( ® sinLHA ).
se se se COSH se

se
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[I.3.2 THE AZIMUTH AND THE ALTITUDE OF THE \7361 VELOCITY

The Local Hour Angle LHAse1 of the velocity VSel :—Vse :
(2.41) LHA =GHAaries—a _+A1
sel sel

The altitude H _of the V _ velocity:
sel sel

(2.42) H_, =arcsin(coss_ cospcosLHA  +sind_ sin @)

The azimuth of the \7581 velocity is calculated within the range from O to 360° starting from the

northern point of the horizon as follows:

—C0So

sinA  =——%gjin LHA
sel 0S sel

sel
sin 5sel —sinH SN

COsA_ = m
cosH_ cosg

We introduce the following notations:
sing__ —sinH__sing
_ sel sel

(2.43) e = cosH cosp (dsa =cosA,)
sel
(2.44) 2 =d_/1ld |, Aq#90° Ay #270° SO
(2.45) A =90°(3+z )-z_ arcsin ( €005 sinLHA )
’ sel sel sel cosH sel

sel

The angles ¢@,4 are the geographical coordinates of the U point (Fig. 5) in which the

interferometer (the observer) is located.

The previously introduced relationships (2.31), (2.34), (2.37), (2.40), (2.42) and (2.45) for
calculating the altitudes and the azimuths of velocities relate to the astronomical horizon
plane which runs through the globe center.

This plane is perpendicular to the vertical line running through the U (g, 1) point (Fig. 5).

The abovementioned relationships apply as well as to the horizon plane which runs through
the U (@, 4) point and is also perpendicular to the vertical line.

1.4 SUM OF VELOCITIES IN THE HORIZONTAL SYSTEM

Let us introduce a rectangular system of coordinates O’ U1U2U3 (Fig. 9) with the two axes
O’ Ul and O’ U2 on the horizontal plane which runs through the point U(p,4). The O Ul
axis coincides with the N,S, line. The O’ U3 axis coincides with the vertical line which runs
through the point U(p,4) (Fig. 5).
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U1 A Se
Aee o
AZS A
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"y 7
AS€1
v884
Su
Fig.9 The rectangular system of coordinates O’ U1U2U3

The \72'5 ) \75’6, \75’91 vectors represent the projections of these vectors on the horizon plane
which runs through the point U (g, 1) .
The coordinates of the velocities:

V. =[ 0, Viuz » 0 ]
V= [ Vasu:  Vew: Vil
Ve=[Veew:  Veewz:  Views ]
\7591 = [ Vsel ul Vsel u2 Vsel u3 ]
(2.46) Ve =V, = oRcose (2.3),
(2.47) V,u1 = Vg COSH, COS A, (2.31), (2.34),
(2.48) Vs uz = V,s COSH ¢ sin A
(2.49) Vs = Vs SiNH .,
(2.50) Ve ur = Ve COSH ¢, COS A, (2.37), (2.40),
(2.51) Ve uz= Ve COSH ¢, Sin Ay,
(2.52) Ve uz= Ve SiNHye
(2.53) Vg u1 = Ve COSH oy COS Ay (2.42), (2.45),
(2.54) Vet uz = Ve COSH o SiN Aggy
(2.55) Veerusz = Vee SiNHggy

4.1  VELOCITY V =V

V01 :Vr +st +Vse (2'1)
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The coordinates of the velocity \7011 Vor=[ Vorur Vorwz» Vorus 1

(2.56) Vorur =Vsu + Vsew
(2.57) Voruz =Vruz +Visuz + Vee w2
(2.58) Vorus =Visuz + Veeus

The modulus of the velocity \701:

(2.59) Vor = V& u+ Véuzt Vs

The altitude H01 and the azimuth A01 of the \701 velocity:
(18%) Vg ug =V, €0s H, cosAy,
(19%) Vg u2 = Vo1 COSH g, Sin Ay,
(20%) Vorus = Vo1 SinHg,

From the equation (20%) the altitude H01 of the velocity \701 can be determined:

V
(2.60) Hyy = arcsin —=°
01
. . . Vot uz

From the equation (19%) we obtain: SinAyy = ————

V1 COsH
Let us introduce the following notation:
(2.61) Zo=Vou! | Voo |» Ao #90°, Ay #270°

The azimuth A01 of the velocity V01 calculated within the range from O to

from the northern point of the horizon is:

(2.62) Ay = 90° (3+ zo;) + 2z, arcsin Voruz
Vg1 CosH oy
11.4.2  VELOCITY V, =V,
V02 :Vr +st +Vsel ’ (2'2)

The coordinates of velocity \702 :

V02 = [ V02 ul V02 u2 VOZ u3 ]

(2.63) VOZ ul = st u Vsel ul
(2.64) V02 u2 :Vr u2 +st u2 +Vse1u2
(2.65) V02 uz = st uz T Vsel u3

The modulus of the velocity Voz:

(2.66) Vo2 = \/Vozz w+Voruat Vaus

The altitude H , and the azimuth A, of the velocity Vo, -
(21%) Vg y1=Vo1 €0sHg, CosAg,
(22%) Vg4 = Vo COSH, sin Ay,
(23%) Vg u3=Vg SinHg,

360° starting

From the equation (23%) the altitude H02 of the vector \70 can be determined:

2
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Vo

(2.67) Hop = arcsin —e2>
Voo
. . . Vo2 uz
From the equation (22%) we obtain:  sinAjy= ———
Vi, COSH o,
Let us introduce the following notation:
(2.68) Zp=Voru! | Vopua|  Age#90°,  Ag#270°,

The azimuth A02 of the velocity V02 calculated within the range from O to 360° starting from

the northern point of the horizon is:

(2.69) Ay, = 90° 3+ 2o,) + 2z, arcsin ﬁ
Parameter The value of the parameter
a 149597-10° km
e 0.01671
23°.439 ~ 0.4090877 rad
p 50'. 292
T 365, 256366
o 365 242199
R 6378.1 km
@ 7.292115-10 ° rad /s
TABLE 10

Table 10 gives the values of astronomical parameters, used in a computation program,
referred to as PROGRAM VolVo2 in Chapter IV, to calculate the coordinates of velocities:

Vo, Vg (21, Vp (2.2).

I1.5 AN EXAMPLE
We are to calculate the coordinates of the \723, \70l (2.1) and \702 velocities (2.2) at the

U point (Fig. 5) with its geographical coordinates ¢=50°34", 1=21°41 on 15" December

2009 at 10.30 UT. The coordinates of the vectors should be determined in a horizontal
system.

In order to solve the problem we will use the previously mentioned PROGRAM VolVo2
(see Chapter IV). In addition to the astronomical quantities, contained in Table 10 and
introduced into the program, we also need to introduce the values of the angles
corresponding to the case-specific time, namely:

- Greenwich Hour Angle of the Aries point GHAaries,

- right ascension a of the Sun,

- angle v (true anomaly).
The values of both i.e. the Greenwich Hour Angle of the Aries point and the sun right
ascension can be found in The Nautical Almanac and they read as follows:

GHAaries = 238°.7166666 GHAsun = 338.70416666 ,
where: GHAsun Greenwich Hour Angle of the Sun.
a, = GHAaries — GHAsun =238.7166666 — 338.70416666 = — 99°.9875, so

a = 360° — 99°.9875 = 260°. 0125 .
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The value of the angle v can be calculated from relationships (2.13) - (2.21).

Astronomical winter duration time TZ.

Astronomical winter started on 21st December 2008 at 12"3™.7 UT.
Astronomical spring started on 20th March 2009 at 11"43™.7 UT.
Hence the astronomical winter duration time TZ in the years 2008 - 2009 equals:

T, =88923"40™ —88.986111 days .
Precession (in longitude) during astronomical winter:
from the relationship (2.16) Ap=(T,-T,,)50.292=12".252 = 0°.003403 .
From the equation (2.17) 88.986111=1(90° —0°.003403—7,) —t(360° —7,) and with the use of
the method of successive approximation, the value of the angle 77, can be calculated:

n, =13°.212402
From the relationship (2.18): T, =t(r;) =12.966631 days .
T, is the time that elapsed from the start of the 2008 astronomical winter until the end of the
2008 calendar year i.e. T, =10%11"56™. 3=10.497430 days ,

hence T, -T, =2.469201 days .

180° <v < 360°
The time t, (v) that elapses from the start of the 2009 calendar year until 10.30 UT on 15"

December 2009 will amount to:
t,(v)=349910". 5= 349.4375 days
From the equation (2.21) we have:
349.4375=T, +t(v) +2.469201  and with the use of the method

of successive approximations, the value of the angle v can be calculated:
v = 341°.37062

Having introduced to PROGRAM VolVo2 the values of the following angles:

¢=50°.566666 | ag =260°.0125

2=21°.683333 | GHAaries = 238°.7166666 |,

v = 341°. 37062
and Vg =0.7546-10C, (the speed of the Sun's center relative to the aether
— Tables 14 & 15, no. 3),

we obtain the coordinates of velocities \7ZS , \701 and \702 in the horizontal system.

THE RESULTS OF CALCULATIONS:

Vector V

V,, =30.260827 km/s
H,, = 3°.634934
A, =271°.711221

Vector Vo = Vo, (2.1) | Vector Vy = Vp,  (2.2)

Ho, = 38°.917536 Ho, = —31°. 762285
Aoy = 283°.707819 Ay, = 259°.634191

47



CHAPTER III

NEWTON'S SECOND LAW OF MOTION

Michelson experiments and the values of the interference fringe shifts, calculated from the
mathematical model, confirm the premise of the existence of the aether and the applicability
of the Galilean transformation.

Therefore let us apply the Galilean transformation.

Q
1 2
0 Vo )
G, = =
/ S e TSR XO
Fig. 10 KZo W

Then let us introduce two rectangular coordinate systems (Fig. 10).

1) Preferred absolute inertial rectangular coordinate system 1, named
OXoYoZo, motionless with respect to the aether.
2) An inertial system 2 i.e. the O’'EQW system that is in motion relative to

the system 1 with constant absolute velocity VO.

Axis O'E is parallel to axis OXo.
Axis 0’Q is parallel to axis OYo.

The times in both inertial systems 1 and 2 are equal: t, =t; =t (the absolute time (3.51)).

The velocity \71 of particle P relative to the inertial system 1 (Fig. 10) equals:
(3.0) v, :V0 +V,

where: \72 the velocity of particle P in the inertial system 2.

The accelerations of particle P in inertial system 1 and 2 respectively:
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Isaac Newton adopted a constant mass for the particle:

m, =m,; = const
According to Newton’s second law of motion, the equations of motion for particle P have the
following form:

_ - d(myV,) dv,
3.1 F=———~=m, —=m,a4,, F, = =m
( ) 1 1 t 191 2 dt 2 dt

=myd,, hence
'32 = IE1
Therefore Newton's second law of motion is invariant with respect to the Galilean

transformation. This means that Newton’s laws of mechanics are the same for both inertial
systems 1 and 2.

III.1 VARIABLE MASS OF PARTICLE CONSIDERED IN NEWTON’S SECOND

LAW OF MOTION
The existence of the aether and the applicability of the Galilean transformation have been
described in Chapter I. Experimental data indicate that the mass of a particle depends upon its
speed. Then let us consider the variability of the particle mass in Newton’s second law of
motion.
INERTIAL SYSTEM 1 (motionless with respect to the aether)

The expression given by H. A. Lorentz for y is defined by:

1
(3.2) e ——
1[1—(\/1 /CO)
where: V1 the speed of particle P in the inertial system 1,
C0 the speed of light in a vacuum with respect to the aether.
(3.3) Vlmax = Co ’ Vl < V1max ’ Vl - Vlmax

The speed Vlmax= C0 is the limit speed of the particle P in the inertial system 1. That speed

is identical in all directions.
The condition (3.3) limits the speed of particle P with respect to the aether.

We assume:

(3.4) my=m, (V,)=myy
where: my =m(V; =0) rest mass of particle P in the inertial system 1,
m, (V) the mass of moving particle P in the inertial system 1,

y the Lorentz relation (3.2).

Then let us introduce the variable mass of particle P into Newton’'s second law of motion
(3.1). The mass can be defined by (3.4):

= d(myV, N

(3.5a) F = % where: m, =m;(V;)=myy  relationship (3.4)
- d \ : . o :

(3.5b) = =% which after differentiation takes the following form:
- dv, dy -

(35C) Fl = mol}/d—tl"' Mgy Evl
- = dy -

Relationships (3.5a — d) express Newton’s second law of motion in the inertial system 1 after
the variable mass of particle P has been introduced.
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INERTIAL SYSTEM 2 (O'EQW system)
The limit speed VZmax of the accelerating particle P depends upon the angle a,, between

vectors V, and V, .

(3.6) gy = 4(\70.\72) SO Vomax =Vomax (@02)

DETERMINING THE SPEED V, .
The speed V2max is the limit speed of the particle P in the system 2 which moves at a fixed

speed V0 in a given direction (angle ay,) with respect to the velocity \70.

ASSUMPTIONS.
The particle P is accelerated in any given direction in relation to the \70 velocity (Fig.11).

1) The velocity \70 is parallel to the OXo axis.

The coordinate of the velocity: Vo’ where: 0<V, <C,.

2) The force IE2 acts on the particle in any given direction. The angle a, represents

any angle.
3) The velocity \72 (t=0)=0.

Ayo el

/J

Ny

NTY

\
\X
\ 0,2 E

ol o U P X,

Fig.11 The force If2 acts on the particle in any given direction (angle aoyz) in relation

to the velocity Vo‘

Coordinates of the velocity \72maxl Coordinates of the velocity VO :
Vomax =Voma C0SQg2,  Vomax SiN g, 0] v, =V, 0, 0]
V2maX >0 .

According to the Galilean transformation: \70 +\72max =\71max so the following equations can be
written: (Vo +Vomax €0 2)? + Vamax SN @g.2)% =Viiax » Vimax =Co =const  (3.3).

Hence the V,. (@) is obtained as follows:

50



(3.7) Vamax = Coly1—(V /Co)2sin? ag, —(V /Co)C0Say,],  hence

(373) VZmax (aoyz = O) = CO _VO 5
(3.7b) Vo max (@02 =180°%) =Cy +V;.
From the equation (3.7) we obtain the inequality:  Cy—Vy =V, pa(@o2) =Cq +Vy.

If the particle P is accelerated in any given direction (3.6) then the Lorentz relation (3.2)
takes the form as follows:

(3.8) Ya= L = where: V,.. relationship (3.7).
V1= (V2 Vo)
VZ <V2max’ V2 _>V2max

When the particle P is accelerating along in the direction of the vector \70 (0‘0,2 =0), then the

relation (3.8) takes the form of y,:
1

Vb =
Y-V, /(Co —V )P

(3.9 according to the equation (3.7a).

When particle P is accelerating in the direction opposite to that of the vector \70 (ao,z =180°),

then the relation (3.8) takes the form of y.:
1

(3.10) Ve =
V1=V, /(Co +V,)1°

according to the equation (3.7b).

Let us assume:
(311) m2 =m2(\/2max,V2):m027a

where: m, Vomax:V2)  the mass of the moving particle P in the system 2,
My, = mM,(V,=0) the rest mass of the particle P in the system 2,
7a formula (3.8).

Let us introduce to Newton's second law of motion (3.1) the variable mass of particle P. Its
mass is determined by the relationship (3.11):

- d(myV, N
(3.12a) F, = % where:  my, =M, Vomax: Vo) =Mgo¥a relationship (3.11).
(3.12b) F, :% which after differentiation takes the form of:

- dv. dy, -
(312C) F2 = mozj/a d_t2+ moz d_'[aVZ

- - dy,

Relationships (3.12 a — d) express Newton's second law of motion in system 2 after
introducing a variable mass of the particle P.
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[II.1.1  THE VELOCITY OF THE PARTICLE
THE VELOCITY OF THE PARTICLE IN SYSTEM 2, (in the O" EQW system)

When the particle P is accelerated in system 2, then its speed V,depends upon the direction

the particle is accelerating towards with respect to the vector \70 .

If we assume IE2 =const then from equation (3.12b) we obtain:

F F
dlyaV, (H)]=—2-dt, [dlyaV, (1)]=—2[dt .
m02 m02
. . F
After integration V,(t)y, =—2t+C,.
m

02
From the premise that t=0:>V2 =0 we obtain the integration constant C4 =0.

F
Hence V, (t)y, =—>t, V, (t)y, =Kgt where: k =—2%.
My, 4 m.,
The V2(t) speed we define as follows:
(3.132) V2 (t);/a = k4t when the particle P is being accelerated in any given direction (3.6)
with respect to the vector \70

(3.13b) V2 (t)yb = k4t when the particle P is being accelerated from rest along the

direction of the vector \70 (g =0),
(3.13¢) V2 (t);/C = k4t when the particle P is being accelerated in the direction opposite
to that of the vector \70 (ag, =180°).
Where: y_ formula (3.8), y, formula (3.9), 7, formula (3.10),

t time in which a constant force If2 1s acting on the particle P.

V@4
\/Zmax C0+VO ]/
/ —

Co—Vo
3
T 3 \2 1

L

Y

0 t

Fig. 12
The relationship between the speed V,(t) and the time in which a constant force If2 is acting

on the particle P.

SYMBOLS: 1 equation (3.13a),
2 equation (3.13b),
3 equation (3.13c).
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[II.1.2 THE ENERGY OF THE PARTICLE

THE ENERGY OF PARTICLE IN SYSTEM 2 ( in the O'EQW system)
We assume that aq, = « (Vo,V,)=const (3.6), V,(t=0)=0

When a force lfz acts on particle P in system 2 then the elementary work performed within a

SLUEYAD P

distance dL is equal to: dE, = IE2 dL, where: F, m
dL =V, dt
d(my,raVs) = - - -
Then dE, :% - Vodt =Moyd (7, Vo) -V, = Moy (dy, Vy +75 dV,) -V, =

=Mz (7o Vy Va +75 AV, -V,) =Moy(dyy V5 +7, V,dV,).
Hence dE, =mg, (dy, VE+7, V2dV2)

The differential dy, of the formula (3.8) equals:

V,dV
dy, = 22 SO
VRl (Vo Vo) 2T
v 3dv vV_dv
dE2=m02( 2 - 22 T — 241/2
Vzmax[l_(vz /VZmax) ] [1_(\/2 /V2max) ]

Total work which needs to be performed in order to move the particle P from rest point A in
system 2 to point B over the distance L at velocity \72 (Fig. 10) equals:

3
T v2idv, X v,av,
2 02 V2 [1_(V IV )2]3/2 [1_(\/ IV )2]1/2
2max 2 2max 2 2max
m,,V.
After integration we obtain: E, = 027 2ZmX___ 4 C,

V1= (V2 Vama)?

From the assumption that V2 =0 = E, =0 we obtain the equation:
_ 2 . . _ 2
0= moZVZmax +C6 so the integration constant C6 = m02V2rnaX . Hence

2
(3.14) EZ = o max - m02V2max , Ez = moZVZmaxya - moZVZmax

V1= (V2 Voma)?

Work E, equals the kinetic energy Ek of the particle P.

2 2
(3.15) E2 = Ek = m02V2max7/a _mOZVZmax

The speed V2max is defined by relationships (3.7).

The expression m V2 in (3.15) represents the rest energy E0 of the particle P for a given

02 2max
direction (3.6).
(3.16) E =m v ?

02 2max

The expression my,Vi 7. in (3.15) represents total energy E_ of the particle P in system 2.

(3.17) Es = m02V22max7/a :
Hence (3.15) takes the following form: E, = Eq —Ey =MyV2 (7 —1)

(3.18) Ex =My Vi (7a —1) is the kinetic energy of the particle P in system 2.
After expanding the formula for y, (3.8) in a power series we obtain:
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a =1+— (\/2/V2max) + (VZ/VZmax) +..

For small speeds V, of the particle P: y, z1+5 (V5 Vo), hence the kinetic energy E
specified by the formula (3.18) equals:

N 2 1 2
E = m02V2max[1+§(V2 Nom ) -1]= _mozvz

(3.19) E, ~Im v2
2 02 2

The formula (3.19) defines kinetic energy of the particle P, which results from Newton's
second law of motion when the mass of the particle P is constant.

The experiments with particles are carried out in laboratories that are located on the Earth
and it is where system 2 (O’'EQW) is also located. Despite Earth’s rotary and orbital motion
round the Sun, for adequately small time intervals it can be assumed that system 2 is inertial

and it moves with respect to system 1 ( OXoYoZo system) at a constant velocity \70 which
modulus is defined by the inequality (1.124):

10 < V,/Cy<2 107"
Hence 10°C = Vy<2:107¢C,
The value of the V0 speed is small when compared with C0 and therefore it can be omitted in
formulae (3.8), (3.9) and (3.10). Having done that, the speed v, =C and consequently the
formulae (3.8), (3.9) and (3.10) take the following form:

1
(3.20) Fa=ty =7, s
-, /C)

From relationships (3.16), (3.17) and (3.18) we obtain relationships that give approximate
values of energies of the particle P in system 2:

(3.21) E ~ mozcj rest energy,
(3.22) E ~m,,C2y, =m,C2 total energy,
(3.23) E, ~m,C2(y, 1) kinetic energy.

Where: y,  formula (3.20).

Now the relationship between total energy ES of the particle and its momentum f)z needs to

be expressed.

From the equation (3.22) we obtain: EZ ~m3,Cq ;/a
Then the following can be written: E2 ~m3,Cdy2 + (p2C¢-piCd)
The modulus of the particle’s momentum is: p, =my,y,V,, SO

E ~m02C0ya moz)’aVzZCo + p2C2

After transforming this equation, we obtain the following:

EZ ~m&Cay2(1-V7 ICE)+piCe, where: y, relationship (3.20).

Hence E2 ~ mOZC(;1 + p2C2 , because  y2(1-V7/CZ)~1.

The ultimate relationship between total energy ES of the particle and its momentum f)z takes

the form as follows:

2
(3.22a) E, =~ 1/mOZC0 +p, C
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PARTICLE’'S ENERGY IN SYSTEM 1 (in the OXoYoZo system)
The energies of the particle P in system 1 can be determined in the same manner as those in
system 2, with the use of formula (3.5h).

The following relationships determine the energies of the particle P:

_ 2
(3.24) E = molCo rest energy,
(3.25) E, =myC2y=mC2 total energy,
(3.26) E, = mole r-1 kinetic energy,

where: y  formula (3.2).

I1.1.3 REST MASS OF THE PARTICLE WITH RESPECT TO THE AETHER
Let us consider the mass of the particle P in systems 1 and 2:
m m
ml(vl):—012 S0 m, v, :Vo):—012
-, /cC.) - /c )
Mo,
M,V e Vo) = \/m so  my(Vy=0)=mg,
2" 2max
my(Vy=V,)=m,(V,=0) , hence
(3.27) Moy = Mot then the rest mass of the particle P with respect to

NEVATSEE

system 1 (with respect to the aether) equals:

_ [ 2 _ 1 2
(3.27a) m,=m, 1—(\/0 /Co) ~ moz[l—z (\/O /CO) ] because V0 /C0 <<1
The quotient VO /Co is defined by the relationship (1.124):

10% < V,/Cy<2-10* . Hence
1 _ 1, _ .
[1- 5(2 1074)?] My < My < [1—5(10 4)2]m02 and after reduction

(1-2-10°) my, < my < (1-05-10°)-m_ .

1II.1.4 THE LAWS OF MECHANICS
Velocities and accelerations of the particle P in inertial systems 1 and 2 are:

The mass of the particle P in systems 1 and 2 are respectively:
m m
m = ol m = 02
Yo ficvicHy?r 2 hovov. )
_(Vl o) _(Vz Zmax)

The forces acting upon particle P in systems 1 and 2 are:

= _ = dy = _ = dya

F =m y-d+m Evl (3.5d), Fy =Mgpya8, + My, TVZ (3.12d),

_ . dy - - .

F1 =m_ y-a+m_ E(V" +V2) . Hence F, #F.

After including the variable mass of the particle P, Newton’s second law of motion (3.5a-d),
(3.12a-d) has the form which is non-invariant with respect to the Galilean transformation.
Hence Newton's laws of mechanics are different in inertial systems 1 and 2.
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1I.1.5 DETERMINING THE If1 FORCE
We determine the IE1 force acting on the particle P in the system 1 when the same particle is
acted on by the force If2 =const in system 2.

ASSUMPTIONS A.

The particle P is accelerated in the direction of the \70 absolute velocity.

The angle ag,= A(\70,\72) =0 relationship (3.6).
1) The absolute velocity \70 is parallel to the OXo axis (Fig.10).
The coordinate of the velocity: VO, where: 0<V,<C, .
2) The force IE2 =const acting on the particle P is parallel to the O'E axis (Fig.10).
The coordinate of the force: FZ; F2 >0.
3) The velocity \72 (t=0)=0.

The vectors lfl, \71, \72 are parallel to those axes, which also results from these assumptions.

The coordinates of forces: The coordinates of velocities:
F2=[ F2, 0, 0 ] VO=[ Vo’ 0, 0 1
F=[ FO, 0, 0 ] V=L v, 0. 0]
F, = const \7l =[ v, 0, 0 ]

v, . =CoV, relationship (3.7a).

Vi (1) =V, () +V,
The V2 (t) coordinate of the \72 velocity is defined by the relationship (3.13b).

A Y

Co o
Ca—Vo
87
A ;
Vik |
\é.k \
l
Vo 1/
| fe=t ¢
0 t, Lt =

Fig.13 The coordinates V; =V,(t=t,), Vy =V (t=t), Vo=V, (t=t,), Vy =V, (t=1t)
of the \71, \72 velocities of the accelerated particle P.

According to the Galilean transformation V1 :V2 +V0, V1k :V2k +V0 .
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From the (3.5b) equation we obtain:

_ F
d(\/ly):m—ldt where: y  relationship (3.2). Hence
01
F, (t
(3.28) [EIAG! n:jﬁ dt
Moy,

Let us take any given time tk of the particle motion under consideration (Fig. 13).

We set a time interval:
(3.29) t, St<t +At, At >0

If the set time interval is very small, it can be assumed that the coordinate value of the Ifl
force which is acting on the particle within this interval is constant: F1 =const .
Then the equation (3.28) takes the form as follows:
F ) . )
_fd v.it) 71= —L J'dt . After integration we obtain:
Moy
F
(3.30) Vi(t) y=——1t+C,
Moy

From the condition: t=t = Vit=t)=Vy, Y =7, Wwe obtain the following equation:

_ 1 . . .
Vlkylk —m—tk +Ck hence the integration constant Ck equals:
01
F )
(3303) Ck :Vlkylk — _tk where:
Moy
(3.31) Ve =;2
Vl_(vlk /Co)
(3.32) Vi (t=t )=V, where: t is within the time interval (3.29) t, <t <t +AtL.
From the equations (3.30), (3.32) at t:tpl
F
(338) Vl7:m—tp+ck
01
And from the equations (3.33) and (3.30a):
1
Vi Vi +mitk
.34 0 _t
(3.34) Fl o
Mg
From the equation (3.13b) at t:tpi
(3.35) Varo _ here: V, =V, (t=t.) lationship (3.9)
) F, where: V, =V, (t=t,), 7,  relationship (3.9).
M3
From the equation (3.13b) at t=t
\Y
(3.36) ty :%}fk where: Vy =V, (t=t),
Mo,
1
(3.37) Vok =

L= Va (Co —Vo)P
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Because the Galilean transformation is in operation, the times in both frames of reference 1
and 2 are equal: t, =t; =t =t,. After comparing the left—hand sides of the equations (3.34)

and (3.35) the following is obtained:
(3.38) o

Vo . _ 2 . .
3 = F, where: m =m_ . 1-(V /C ) relationship (3.27a).

Moy Moy
From the equations (3.36) and (3.38) we obtain:

Fy_ Vay = Vara)y1-(Vo /Co)?

F
Vaiy =Vyr +m71tk

(3.39) where: F, =const,
F Va7e =V ¥k

(3.40) V, =V 4V,

(3.41) V, =V, Y,

By assumption, the time interval in (3.29) is very small and the inequality V2 >V2k is fulfilled
within, therefore the value of the V2k /V2 quotient is virtually equal to 1 and is less than 1.
V2k /V2 =a, then
(3.42) vV, =aVv,

The quotient (3.39)

If we define:
a, =0.999999 was adopted for calculations.
F1/F2 is the function of the V0 and V2 coordinate values:

F

Lo f,(V, V
£ falo. V)

relationship (3.39)

For a given coordinate value V0 of the \70 velocity, the wvalue of the quotient F1 / F2
determined from the relationship (3.39) corresponds with every V2 coordinate value of the \72
velocity. Table 11 presents the values of the Fl / F2 quotient for different values of V0 /C0

and V2/CO.

V0 /C0 V2 /C0
1 2 3 4 5
0.00001 0.2 0.49 0.69 0.97
1.5.107 0,99999998 | 1.0000737 1.0001475 1.0001833 1.0002215
1073 0.99991068 | 1.0005030 1.0009883 1.0012262 1.0014788
1072 1.00039406 | 1.0051134 1.0100151 1.0124266 1.0149834
0.1 1.01805269 | 1.0623422 1.1156201 1.1426304 -
F
F—l= falVo/Co, V,/C,)  (3.39). The angle g, =0
2
F2 = const a, =0.999999
TABLE 11 The values of the F1 / F2 quotient, F2 = const

F=F,faVo/Cy, V,/C,).
Following (3.13b) V,(t) is known, then consequently F, = f(V,/Cy, t) is known too.

From the results of calculations show in Table 11, it can be concluded that the quotient
F1 / F2 takes different values.
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ASSUMPTIONS B.
The particle P is accelerated in the direction opposite to the \70 absolute velocity.

The angle aq, = «(Vy,V,) =180° relationship (3.6).
1) The absolute velocity \70 is parallel to the OXo axis (Fig.10).
The coordinate of the velocity: —Vo, where:  0<V, <C, .
2) The force IE2 =const acting on the particle P is parallel to the O'E axis (Fig.10).
The coordinate of the force: Fz’ F2 >0.
3) The velocity \72 (t=0)=0.

Following the above assumptions B, the vectors Ifl, \71 and \72 are parallel to these axes.

Coordinates of forces: Coordinates of velocities:
F,=[ F,, 0, 0] vV, =[-V,, 0, 0]
F=[ Fo, 0, 0] V,=[ V,(, 0, 0]
F, =const v, =[V, (), 0, 0]
Vomax =Co +Vo  relationship (3.7b).
V=V, +V,, so V =[ Vo)V, 0, 0]

Vi) =V, (1) -V,
The V2 (t) coordinate of the \72 velocity is defined by the relationship (3.13c¢).

V& @
C ot Va

| Co ~

/

Y

Var @ \ V2 ®
a

/]
i
M

F1g14 The COOl’dil’late Vl :Vl(t:tp) y Vlk :Vl(t:tk) y VZ :Vz(t:tp) 9 V2k :VZ(t:tk)

i fftP ¢
t t+At

of the \71, \72 velocities of the accelerated particle P.

According to the Galilean transformation Vl =V2 —VO, Vlk =V2k —VO.

The quotient Fl/F2 of coordinate values of the Ifl, IE2 forces can be determined as shown

under assumptions A.
Under assumptions B, the quotient Fl/F2 is defined by the equation (3.43):
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F Vi =Varady1-(Vo /Co)?
F, Vove —Var«

(3.43)

, where: F2 =const ,

y relationship (3.2), Yy relationship (3.31), 7. relationship (3.10),

(3.44) Yk = ! ,
\/1_[\/2k I(Co +Vo)I?
(3.45) Vv, =V, -V,
(3.46) V1k :V2k —VO,
v, =aV, relationship (3.42)

a, =0.999999 was adopted for calculations.
Fi/F,="fg(Vo. C,) relationship (3.43).

For a given value of the coordinate —VO of the \70 velocity, the quotient F1/F2 determined

from the relationship (3.43) corresponds with every V2 coordinate of the \72 velocity.

Table 14 presents the F /F, quotients for different values of V,/Cy and V,/C.

V0 /C0 V2 /C0
1 2 3 4 5
0.00001 0.2 0.49 0.69 0.97

1.5-107% 0.99999998 | 0.9999283 | 0.9998536 | 0.9998164 | 0.9997786
1073 0.99991068 | 0.9995032 | 0.9990161 0.9987770 | 0.9985242
1072 1.00039406 | 0.9951119 | 0.9902803 | 0.9879245 | 0.9854337

0.1 1.01805269 | 0.9604290 0.9145631 0.8929439 0.8706278
F
F_i: feVo/Co, V,/C.)  (3.43). The angle ag, =180°
F2 = const a = 0.999999
TABLE 12 The values of the F1 / F2 quotient, F2 = const
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1.2 TIME MEASURED BY ATOMIC CLOCKS

Let us introduce the following notations:
Arl time measured by the clock in the inertial system 1,

Arz time measured by the identical clock in the inertial system 2.

Then we adopt the assumptions:
1) The clocks are located in the origins O and O’of the systems 1 and 2 respectively.

2) The origin O of system 2 is in motion with constant velocity V0 along a straight

line running through the origin O of system 1 (Fig 10).
3) The clocks were synchronized Arl =Az'2 =0 when the origins of the two systems

overlapped.

Time measured by the atomic clock depends on the rest mass of its particles, therefore the
following equations can be written:

At 9] \ Mo m
(3.48) 2 _ A2 :( 01)1/2,
1 Op my, Moz
where:  wp,®p, are atom vibration frequencies in systems land 2 respectively

_ 2 . .

and m, =m,1-( /C) relationship (3.27a).
From the equations (3.48) and the relationship (3.27a):

_ _ 2 \1/2 _ _ 2q1/4

Az, _Arl(,/l Vv, /C )2 )2 =ar L (v, /C)°T1"*,  then
_ _ 2q1/4

(3.49) Arz —Arl[l (\/OICO) ]
There is a dilation in the times measured by the clocks (3.49). The clock in system 2 is

delayed with respect to the clock in system 1.

The time measured by the clock in the inertial system 1, which presents a preferred absolute
system, defines the absolute time t.

(3.50) t=Ar

Then applying (3.49) and (3.50) we obtain:
AT

(3.51) t=Ar 2

1 [l_(vo /CO)2]1/4
Hence knowing the time Arz that has been measured by the clock in the inertial system 2

and the value of the system’s absolute speed VO, the absolute time can be calculated from the

relationship (3.51).

And as the values of the modulus of clock’s velocity \70 vary (relationship (1.120)), the times
measured by the clocks on the Earth’s surface are subject to continuous changes.
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1.3 DECAY OF PARTICLES

An unstable particle is subject to a decay process which course can be described by the
following equations:

(3.52) m@®=m N exp(-—L),
1 01 0 7,
(3.53) m_(t)=m_N exp(—i), where:
2 020 z,
Mo Mo, rest masses of the particle in inertial systems 1 and 2,

initial number of particles (at t=0), which is identical in inertial

systems land 2,
ml(t) . m, (t) masses of particles undecayed during t period

in inertial systems 1 and 2,
T, T average life of particles in inertial systems 1 and 2.

. . 3 m 1
Let us write equations: A R A R rl = const

7.m _ 2
1 o 1-(vV /C))
Hence average life z, of particles in the inertial system 2:

T

(3.54) T, = S
[ 2
1—(\/o / Co)
The equations that define the number of undecayed particles during the decay time are:

(3.56) N, =N, exp(——),
Tl

(3.57) N, (®) = N, exp(-—),
P
where: Nl(t), Nz(t) number of particles undecayed during t period in the inertial

systems 1 and 2,

T T, relationship (3.54).
Ny@) |
No@) Ny
ME N ®
0

Fig.15 Graphic representation of equations (3.56) and (3.57).
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A laboratory can be regarded as the reference system 1, resulting from the absolute speed
of the Earth being very small (1.126).

The average life time z; of mezons z* that are motionless in relation to the laboratory is:
r, =2.603-107%s.

When the relative speed of mezons 7z reaches value V,/Cy =0.99, their average life time rz,

in system 2 i.e. where these particles actually are, can be calculated from the equation

(3.54)) r,=——"L  -2603-10°.7.088=1.84510"s, then 7, >7.

V1-0.992

Experimental results [3], [5] are in agreement with the average life time 7, of mezons z*

as calculated above. A compliance with relationship (3.54) is also confirmed by experiments
with other unstable particles [1].

Equations (3.52), (3.53), (3.56) and (3.57) imply that the decay process of particles in the
inertial system 2 is slower than the decay of identical particles in the inertial system 1.
The life time of particles in an inertial system that is in motion in relation to the aether is
longer than the life time of identical particles in a preferred reference system which is
motionless in relation to the aether.

1.4 DETERMINING A SIDEREAL DAY WITH ATOMIC CLOCKS

We start with the following equation: Jla)l = J2w2 which implies that
o, J m
(3.58) S e 1 where:

®, J; My Vi- (v, /C0)2
m =m 1=V /CO)2 relationship (3.27a),

‘]1’ J2 Earth’s moment of inertia in systems 1 and 2 respectively,
w,0, angular speed with which the Earth rotates in systems 1 and 2,
Mo Mo, rest mass of particles on the Earth in systems 1 and 2,
V,e =V the speed at which the Earth’s center travels with respect to the
aether (1.126).
) .. T @,
From the relationship: 2.9 , we have T =—17 , where:
. o, 2 o, 1
T1’T2 Earth’s sidereal day in systems 1 and 2.
By applying equations (3.58) and inequality V0 /C0 <<1, we obtain:
1 1 )
(3.59) T Ty sl Vo /GO T,

V1-(V /C)?
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The time measured by an atomic clock on the Earth’s surface i.e. in system 2 is:
Aty =[1-(Vy /Co) 1M ATy z[l—%(vo /Cy)?1Az;  relationship (3.49).

Time Arz that is measured by the clock at Arl :Tl is:

1
(3.60) ATy z[l—z(v0 1Cy))?1 ATy
The difference RT of the duration of the two times:
R, =T, _ATZ(Tl)’

which after taking into consideration equations (3.59) and (3.60) becomes:

(3.60a) R, :%(\/O /CO)ZT1 ) From equation (3.59) we obtain:
_ 2
T, =T, 1=V, /C,)

Hence the RT of the time between the duration of the Earth’s sidereal day and the time

(3.60Db):

measured by the atomic clock after the day elapsed:

(3.61) R; =%(\/0/C0)2w/l—(\/0/CO)2 T ;  from the equations (3.60a) and (3.60b), where:

T, =T =~86164.091s .

The RTrg of the time between the duration of the Earth’s stellar year and the time measured

by the atomic clock after the year elapsed:

(3.62) Rrrg =%(\/O/CQ)Z,/1—(\/O/co)2 Ty where:
T,y =365.256366 days.
v /e R, (3.61) R (3.62)
0 0
S S
107 0.646-1072 0.236
1.244.1074 1073 0.365
15.107 1.454-1073 0.532
2.107 2584.1073 0.946
5.10™* 16.155-1072 5.917
TABLE 13

The inequality Azygyy <T, results from equations (3.59) and (3.60). Hence the elongation of

the Earth’s sidereal day with respect to the time measured by an atomic clock is only
apparent (see Table 13). In reality the time measured by the clock is shorter with respect to
the time determined by the Earth’s rotation which angular speed varies slightly not only due
to the movement of masses such as water, snow and lava but also due to the fact that the
Earth’s speed on its orbit constantly changes.
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III.5 DETERMINING THE ABSOLUTE VELOCITIES OF THE EARTH

AND THE SUN WITH ATOMIC CLOCKS
There are two methods for determining the absolute velocities of the Earth and the Sun. Both
of them involve the use of atomic clocks.

METHOD I:
In which the difference in times that have been measured by two identical atomic clocks
ZAa,ZAp is exploited.

Assumptions: 1) Clock ZAE1 is situated along any given Earth’s parallel.

2) Clock ZAp is situated at the South Pole.

Clock’s velocity V0 on Earth’s surface with respect to the aether is the sum of three vectors:
(3.63) V =V _+V 4V  relationships (2.1), (2.2).
0 ra A se

Vector \7ra is the velocity of the ZAa clock on the plane of Earth’s parallel.

The Earth’s center travels with respect to the aether with velocity:
(3.64) V =V +V SO
e 8 se

(3.65) V. =V +V
0 ra ze

_ 2 2

(3.66) vV = 1/vZS +V 2

In the coordinate system OXyY,Z, (Fig. 16) vector \7Ze is located on the Y,Z, plane. The

Earth’s parallel with clock ZAa coincides with the X,Ys plane. Thus vector \7ra is located on

the plane X,Ys .

Fig.16 The position of vector \7ra with respect to \7Ze vector .

SYMBOLS:
Q  an angle between vector \7Ze and the Earth’s parallel (plane X,Y,),

4 an angle between OX,; axis and vector \7ra ,

4 an angle between vectors V. and V 4 =A(V Vv
\% ra ze \% ra ze
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The direction of vector \7ra varies as a result of changes in the values of angle $=w, Az, .

Clocks are synchronized at the time when vector \7ra 1s perpendicular to vector VZe le.

9=0 (Fig. 16). On the clocks’ synchronization day the UT needs to be determined when the
vectors \7ra and \7Ze become perpendicular to each other.

The angles in Fig. 17 follow the equation:
_ 0_
SZAa =360 (GHAs Yo +4)

Vector \7r‘a is perpendicular to both vector \72‘s and \72’e when angle ‘92Aa =180° ,

thus 180° =360° —(GHA_+y_+2) . Hence

(3.67) GHA, =180° —y -4

If the expression 180° -V, -1 takes a negative value then GHASS

(3.68) GHA, =360° +180° —yg — 4

(3.69) ye=a.-—a, . where:

3.69a) a ~ arctg[tg(w— 90°)coss] a,, =—90° (270°), w  relationship (2.7)
the right ascensions after spring equinox, or

(3.69b)  ag ~180° —arctg [tg(90° —y) coss ], a, = 90°, w  relationship (2.10).

the right ascensions before autumn equinox.

True anomaly v can be obtained from relationship (2.20) or (2.21) adopting for calculations
the time UT of the equinox.
We can determine the UT of the clocks synchronization time TSyn only on the day of the

equinox (spring or autumn), because at that time the projection \72’e of vector \72e on the
equator’s plane is the same as the projection \72‘s of vector \7ZS (Fig. 17).

Knowing the synchronization day and the value of the GHA, angle obtained from relationships
(8.67) or (3.68), the UT of clocks synchronization time Tsyn can be found in The Nautical

Almanac.

The coordinates of vectors \7ra and \72e in the OXyYsZy system (Fig.16) are as follows:
V_ =[V_cosd, V sing , 0 ]
ra ra ra
vV _=[0, V_cosQ , V_ sinQ]
e ze e

Scalar product of vectors \7ra and \7Ze implies:
coss, :\7,6l Ve _ V4 C0SQ Vi, sin 9
VraVze VraVze
(3.70) cosd, =cosQ sin 9

The absolute speed VOra of the clock located on a parallel can be obtained from the following

=cosQ sing . Therefore

expression:
2 2 : 2 _\y2 2
VOra = (\/Ze +Vra cos.9v) + (\/ra sin .9V) _Vze +Vra + ZVmVZe cosd,, .
Applying (3.70) we have:

(3.7D) Vi =V2+V2 +2V,, V,.cosQ sin &

The absolute speed VOp of the clock located at the South Pole:

(3.72) Vv, =V
p ze
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Fig. 17 Angles in the equatorial coordinate system.

SYMBOLS:
PN the North Pole, \7|r'a projection of vector \7ra on the equator’s plane,
1 equator, \7Zs projection of vector \7ZS on the equator’s plane,
2 parallel (of altitude), V,,  projection of vector V,, on the equator’s plane,
G Greenwich, A the longitude of clock’s position,
S the Sun, 7 the w angle in equatorial system (Fig. 7),
ZAa atomic clock, GHAS Greenwich Hour Angle of the Sun,

GHA Greenwich Hour Angle of the \7ZS vector.

S

Relationship (3.49) determines the times measured by the clocks in systems 1 and 2

1
ATZ =Af1 [1_(\/0 /C0)2]1/4 ~ [1_Z (VO /CO)Z] Arl

The time measured by the ZAa clock The time measured by the ZAp clock
at a selected point on the parallel: at the North Pole:
1 1
ATy z[1—2(\/0ra /Co)z] Aty Aty z[l_Z(VOp /CO)Z]ATI
The difference in times measured by the clocks Rpa =A7, —A7ypy :4(%2(\/02ra _VOZp) Aty

0

which, after applying relationships (3.71) and (3.72), takes the following form:
Rpa = %[Vé +2V,, cosQ sin 9] Az,

The value of the & angle varies, hence very small values of time increments Arl should be

considered.
As a result: dRp, = 40%[\/& +2V,, V,e c0osQ sin 8] d(A7y), 9= w,AT,
0
, . 2T 2r 2
Earth's sidereal day T, =T =86164.091s |, o, :T_:? . So 9=—NA7r
2
AT ) )
According to (3.51) Az 2 zArz , since the value V0 /C0 1s very small.

1 -V, /00)2]1/4
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. . .2
We now have the following equation: dR, =L2[Vfcl +2V,,V,e C0sQ 5|n(T” A7,)]d(A7,) .
4C§

The difference in times that have been measured by the clocks during a sidereal half-a-day
which commenced at the time of their synchronization:

1 TI2 T/2 27

Rpari2) :4C—2[Vr§1 [d(Ary)+2V, Ve cOsQ | sin(TArz) d(A7,)] and after integration
0 0 0

V2T Ve
8CcZ 2xC¢
The difference in times that have been measured by the clocks during one sidereal day
which commenced at the time of their synchronization:

(878) Rpa(le) = VZECOSQ

1 T Ton . .
R o) =4C—2[vr§ £ d(Az,)+2V _V cosQ{ 5|n(?Arz)d(Arz)] . After integration
0
2
_ _ra
(3.74) Rpa(T)_4CZT
0

Half-a-day fluctuations of difference in times that have been measured by atomic clocks are
observed.

After equation (3.73) has been transformed and relationship (3.66) introduced the following
equation appears:

27CZ R v
(3.75) (\)/ F_’lfi(m) - 7[4” = WV2i+VZ cosQ
ra

Now the value of cosQ that appears in equation (3.75) needs to be determined. It can be done
by following this procedure:

Vector Vze 1s the sum of two vectors perpendicular to each other:
V =V +V relationship (3.64).
ze 5 se
Vector \7ZS is situated on the plane of the ecliptic (Fig.6).
Vectors +\7se and —\7Se are both perpendicular to the plane of the ecliptic (Fig. 8).

In the OX,Y;Z; system, the coordinates of vector \7Ze are (Fig. 6):

(3.76) \7Ze =V, cosy, Vv _sinp, +Ve 1, where:
(3.77) n=180" -7, when 0<v<180° -7,
(3.78) n=180" +7, when 180° -, <v <180°
(3.79) n=mn, when 180° <v <3607, where:
n,  relationship (2.4), n,  relationship (2.6),
n, relationship (2.5), v true anomaly.

Let W be a unit vector situated along the Earth’s axis and pointing north. This vector is
therefore perpendicular to the plane of the parallel.

The coordinates of vector W in system OX;Y;Z; are (Fig. 6):

W =[cos(90° —¢) cos(-7,),  cos(90° —&) sin(—7,),  sin(90° —&) ] . After reduction
(3.80) W =[sin& cosz, , —sing singy , cose] , where:

&

?71

the inclination of the ecliptic to the equator,
an angle obtained from equation (2.17), (Fig.6).
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SYMBOLS:
1 parallel plane i.e. its projection,
2 Earth’s axis,
W a unit vector.
d,  the angle between vectors W and V_, &, = 4(W,Vyg)
Scalar product of vectors (3.76) and (3.80) gives:
WV
cosYy =V\N—Ze , W =1. This implies that

ze

1 . . . .
cos Yy =V (V5 cosn sine cosmy, — V,gsinmsine sinn, £V, cose )
ze

which, after transformation and with relationship (3.66) included, makes:
(3.81) c0s 4y _Vygsing cos@+m;) Vs cose

Was +Veo

According to Figures 18a and 18b the following expressions can be written respectively:

—_0n0 _
3W =90"-Q ,
‘9w =90°+Q . Hence
cosd, =cos@° FQ)=+sinQ . In this way sinQ=+cosd, . So

Q=arcsin(x cosd, )= J_rarcsin(cos.slW ). Hence
cosQ =cos[+ arcsin(coslslW )= cos[arcsir(cosSW )].

Then after applying equation (3.81):
V,sine cos@+n,) £V, Ccose

Was +Vee

If relationship (3.82) is used in equation (3.75), the following expression appears:

27C¢ R v V.. sine cos(y+m,) +V,, COSe
(3.83) 0 “palliz) _ Tlra _ N2 1v2 cos[ arcsin—2 Gm) * Vs ]

Via T 4 Vo +Va

Now we have two equations for calculating the speed VSe of the Sun with respect to the

(3.82) cosQ = cos[ arcsin

]

aether:
27C¢ R v V, sine cos@+17,) +V,, COSe
(3.84) 0 "ra2) 7Y _ 2 4v2 cos] arcsin—2 LA 1.
Via T 4 VWi +Ve
when V. =V +V , or
ze Zs se
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27CZR v V, sine cos@y+1,) —V,, COSe
(3.85) 0 /) Tl _ N2iv2 cos| arcsin—2 @m) ~Ve 1.
Via 4 V24V 2
Zs se

when V =V -V
ze ZS

se
Knowing Rpa(r/zy . the absolute speed V_ of the Sun can be calculated from equations (3.84)
or (3.85) by the method of successive approximations. The Ry, (r/) is the absolute value of

the difference in times that have been measured by atomic clocks after half a sidereal day
has elapsed since the time of their synchronization.
Having calculated VSe , the absolute speed VZe of the Earth can be obtained as follows:

_ 2 2 . .
v = *’st +VZ  relationship (3.66),

VvV relationship (2.35).
relationship (2.3).

where:

The speed of clock: V,, =@Rcose

Cconsequently the speeds are: V,,, V, (Table 14) from equations (3.84) & (3.66) or
(3.85) & (3.66).

Rpa (T/2) Rpa (T/2)

No. For equation For equation Values obtained from equations:
(3.80), +V., (3.85), -V, (3.84) & (3.66) or (3.85) & (3.66)

V,. /C, V. /Cq

S S - -
1 1.0567-10°° 1.4148-10°° 1.0436-107 0.3333-107*
2 0.8806-107° 1.5910-10°° 1.1897-107* 0.6613-107*
3 0,8305.107° 1.6421-107° 1.2440-107* 0.7546-10*
4 0.6360-10° 1.8356-10°° 1.4916-107* 1.1166-107
5 0.5439-107° 1.9277-107° 1.6239-107* 1.2880-107*
6 0.1196-10°° 2.3520-107° 2.3014-107 2.0780-107*
Rpar/2)  values adopted for calculations,
V,. ICy absolute speed of the Earth’s center relative to the speed of the light Cy,
Vi, /Cy  absolute speed of the Sun’s center relative to the speed of the light C .
TABLE 14.

Table 14 provides the results of calculations of the VZe /C0 and VSe /C0 values which

correspond to the Rp,(r/p) values adopted for calculations.

The values in no. 6 cannot be accepted for two reasons:

1.1f V,, /C, took value given in no. 6, the shifts of interference fringes in the Michelson’s
interferometer would be visible (Table 2).

2. Apparent elongation of the Earth’s sidereal day would take a few milliseconds (Table 13).
Given Rpa(r/Z) , the value calculated from the experiment, the absolute speed of the Earth’s
center and the absolute speed of the Sun’s center can be obtained with the use of method I.
Given Ry, (r/2).the direction of the absolute velocity of the Sun’s center (+\7se or —\7se , Fig. 8)

can also be determined if we know from which equation ((3.84) or (3.85)) the value of
Vi /Cy was obtained .

PROGRAM VzeVse was applied for calculations (for results — see Table 14).
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METHOD II.

In which the difference in times that have been measured by two identical atomic clocks
ZAa,ZAb, that are located along any given Earth’s parallel, is exploited.

Assumptions: 1) The distance clock-Earth’s center is identical.
2) Clock ZAa 1s placed in location of A longitude.

Clock Z,% is placed in location of 1+180° longitude.
The clocks are synchronized at the time when velocity \7ra of the ZAa clock is perpendicular to

vector Vze (Fig. 17). Method I discussed above describes procedures for determining the UT

of synchronization time.
The absolute speed VOra of the ZAa clock:

Ve =VA +V2 +2V,, V,e cOSQ sin 9 equation (3.71).
Hence the absolute speed VOrb of the ZAb clock:
2 2 2 :
(3.86) Voo =Viye +Vi5 +2 Vi Ve €OSQ sin ($+7) v =V
Time measured by the ZA; clock: Time measured by the Z,% clock:
1 2 1 2

ATypy :[l_z(\/Ora 1Co) 1 A7y ATy, =[1—Z(V0rb 1Cy)°1 A7y

The difference in times measured by the clocks: Rpa = ATy —ATypa Z%(Vozra V&) Aty
0

After applying equations (3.71) and (3.86): Rpa = %Vra V,e cOsQ[sin 3—sin(3+7x)] Ar;

0
If ATl are the values of very small time increments, then:

dR,, :%vravze cosQ [sin 9—sin(9+7)] d(Az,) .
0

AT
According to relationship (3.51) Az, = 2

1 [1_(\/0/00)2]1/4

~ Arz as the V0 /C0 value is very small.

2 2 T
The angles Sz?Arz, 19+7r:?(A12 +E).
1 .2 .2 T
Hence dea = Evra Vze cosQ { Sin (TATZ) —Sin [?(ATZ"FE)]} d(ATz)
Difference in times measured by the clocks during a sidereal half-a-day that commenced at

the synchronization time:

TI2
.2 .2 . .
Roa (1/2) =Lvravze cosQ [{sin (£Z Azy)-sin[ZZ (Ar, +I) 1} d(Ar,). After integration
2¢¢ 5 T T 2

AV
(387) Rba(T/Z) :szze COSQ.

7 C§
Difference in times measured by the clocks during a sidereal day that commenced at the
synchronization time:

T
.2 .2 . .
Rpa () =Lvravze cosQ J'{ sin (—7Z A7r,y)—sin [—”(Ar2 +I)]} d(Az,). After integration
2C¢ 5 T T 2

(388) Rba (T) =0
After equation (3.87) has been transformed and relationships (3.66) and (3.82) implemented:

7C{R .V, sing cos(n+n,) +V, COse
Z 70 e@2) _ Jv2iv2 cosfarcsin—2 (7 +m) Vs ]

ViaT YV +Vg
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That provides two equations for calculating the speed Vse of the Sun with respect to the

aether:

7Cg R V. sine cos(p+1,) + V, COS &
(3.89) Z 20 Ba@2) _ Jv2 4V cos[arcsin—2 (7+m) + Ve 1,

Via T YV +Ve
when V =V
e z

Z

+V_ or
S se

7Cg R V.. sine cos(n+n,) — V.. cOS
(3.90) 20 e@2) | Jv24v2 cosfarcsin—2 (7+711) — Vee COSE 1,

ViaT YV +Vs

when V =V -V
e S se

Z

Knowing Ry, (r/z) . the absolute speed V_ of the Sun can be calculated from equations (3.89)
or (3.90) by the method of successive approximations. The Ry,(r/p) is the absolute value of

the difference in times that have been measured by the atomic clocks after half a sidereal
day elapsed since the synchronization time.
Having Vse , the absolute speed VZe of the Earth can be obtained as follows:

N VEIRVE
VZe - VZS +VSe
v relationship (2.35),

The speed of the clock : Vra =wR cosp relationship (2.3).

Vi (Table 15) from equations (3.89) & (3.66) or
(3.90) & (3.66)

relationship (3.66), where:

Consequently the speeds are: V,,

Rpa (T/2) Rpa (T/2)

No. For equation For equation Values obtained from equations:

(3.89), +V., (3.90), -V, (3.89) & (3.66) or (3.90) & (3.66)
V,. /C, Vg, /C,
S S - -

1 2.0927-10°° 2.8089-107° 1.0436-107 0.3333.107*
2 1.7403-10°° 3.1612-107° 1.1897-107* 0.6613-107*
3 1.6401-107° 3.2615-10°° 1.2440-107* 0,7546-107*
4 1.2511-107° 3.6504-107° 1.4916-107* 1.1166-10~
5 1.0670-10°° 3.8345.10°° 1.6239-107* 1.2880-107*
6 0.2183-10°° 4.6832-10°° 2.3014-107 2.0780-107*

Rpa(rr2)  values adopted for calculations,

V, /C, absolute speed of the Earth’s center relative to the speed of the light Cg,

V. /Cy absolute speed of the Sun’s center relative to the speed of the light C, .

TABLE 15.
Table 15 provides the results of calculations of the VZe /C0 , VSe /C0 values which

correspond to the Ry, /2y values that were adopted for calculations.The values in no. 6

cannot be accepted due to reasons described in method I.
Given Ry, /2y, the value calculated from the experiment, the absolute speed of the Earth’s

center and the absolute speed of the Sun’s center can be obtained with the use of method II.
Given Ry,(r/2y, the direction of the absolute velocity of the Sun’s center (+\7se or —\7se ,

Fig. 8) can also be determined if we know from which equation ((3.89) or (3.90)) the value of
V. /C, was obtained.

PROGRAM VzeVse was applied for calculations (for results — see Table 15).
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II1.5.1 CALCULATING ABSOLUTE VELOCITIES OF THE EARTH AND THE SUN
(Example)
Assumptions:
1) Atomic clock ZAais located in a place with geographical coordinates:

»=50°34", 1=21°41 (Tarnobrzeg city, Poland)

2) Experiment begins on 23rd September 2011 with the aim to obtain the difference in
times that have been measured by the atomic clocks.
First, the synchronization time of atomic clocks needs to be calculated as follows:

Year 2010. Astronomical winter starts on 21st December 23"38™5 of the UT.

Year 2011. Astronomical spring starts on 20th March, 23"20™.7 of the UT.
From that it can be inferred that the duration of astronomical winter in 2010-2011:

T, —88923"42™ 2 — 88.9876388 days. Precession in longitude during astronomical
winter (2.16) is: Ap=(T,/T,,)50 . 292 =5.9404049-10 rad .
From equation (2.17) i.e.: 88.9876388=t(x/2—-5.9404049-10° —7;)—t(2z—7,) the value of the

angle m, (Fig. 6) can be calculated by the method of successive approximations:

1, =0.2295109 rad =13°.1501154
From relationship (2.18) we have: T, =t(n,)=12.9054648 days .
The period of time that elapsed from the start of astronomical winter of 2010 until the end of
the calendar year: Ty =9921™ 5-9.0149305 days.
Difference of the two times: T, —T, =3.8905379 days .

Autumn equinox: 23rd September, 9"a™6 UT.

Time t, (v) which elapsed from the start of the calendar year of 2011 until 9"4™.6 o’clock
UT on 23rd September 2011 is t,(v) = 26599"4™ 6 = 265.3781944 days . Given the inequality
180° <v <360° and the equation (2.21), in which 265.3781944 =T +1(v)+3.8905379 , the value

of true anomaly can be calculated by the method of successive approximations:
v =4.465626 rad = 255°.8621.

From equation (2.10) we have: y =89° 0678643.

From equation (3.69b):  «, ~180° —arctg [tg(90° — ) cose]=179°.1448396 |, o, =90°
From equation (3.69): Wr =a —a, =89°.1448396
From equation (3.67):  GHA, =180° —y — 1 =69°.1718271 (1=21°41=21°.6833333 ).

According to The Nautical Almanac, the time that corresponds with that GHA, angle is:
16"29™M5° UT.

The UT of clocks synchronization time: Ty, = 16M"29M55 UT.

Thus the clocks need to be synchronized at 16"29™5°% of UT on 23rd September.

Then after half a sidereal day has elapsed since the synchronization time of the clocks i.e. at

4"27M7% of UT on 24th September, the difference in times that had been measured by the
atomic clocks has to be taken and used in calculations.

PROGRAM VzeVse, detailed in this work, was used to calculate the absolute speed values of
the Earth and the Sun. After the values Rpgr/2) or Rpgrj2) were applied to the program

together with the value of true anomaly v = 255° 8621 , the absolute speed values of the Earth
and the Sun were obtained (see method I and method II).

The results for values of Ryar/2), Rpaqr/2) are presented in tables 14 and 15.
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CHAPTER IV

PROGRAMS

IvV.1 PROGRAM: abIM
The following symbols were adopted and used in the program:

VW :VOICO’ er = (ea5_eo)/ﬂo y eW2 = (eb5—e0)//10 , LO :ﬂ,
g thickness of the semi-transparent PP plate,
gl angle Yy
g2 angle Yy

ap adopted value of angle a,

a angle a ,

b angle g,

h increment of a, £ angles,

F angle @,

de a very small positive number used for calculations.

Angles given in radian measure.

In PROGRAM abIM the following values were used:
ap=0.1rad , h=10"" rad, de = 107",

Shifts of interference fringes are determined with respect to point Mo with a coordinate
€y =0.1508323849500 m .

After introducing the values of F, Vw variables into the program, the calculations end when
the conditions of the approximations of points Ag, Bs to point M, are satisfied:

ewl <de and ew?2 <de.
Then lewl | =] (e;s—€9) /4 | <1077 and lew2 | = (eys—€9) /A | <1077

Following values were used in calculations:
1) Basic dimensions of the Michelson’s interferometer.
L=Ls+12m , Ly=0.14m,
L2:1.2 m, L4:0.10m,
g=1.25-10"3m (thickness of PP plate).

2) The wavelength of light in a vacuum A, =5.9.10"" m.
3) The PP plate refractive index with respect to a vacuum n, =1.52.

Programs are written in TURBO PASCAL 7.
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PROGRAM abIM;
Var
a, ap, b,Vw, h, de, ew, ewl, ew2, Rw, gl, g2, gl1, g22,
al, a2, a3, a4, ab, bl, b2, b3, b4, bb
xal, xa2, xa3, xa4, xab, xa2l, xa3l, xa4l, xabl,
xbl, xb2, xb3, xb4, xbb, xb21, xb31, xb41, xb51,
val, yva2, ya3, va4, yab, ya2l, ya3l, ya4l, yabl,
ybl, yb2, yb3, yb4, ybb, yb21, yb31, yb41, yb51,
xyal, xya3l, xya4, xya4dl,
xybl, xyb2, xyb4, xyb21, xyb41,
r2l, r22, r221, r23, r31, r32, r321, r33
rdl, rd411, rd2, r421, r43, r51, r52, rb21, r53,
s21, s211, s22, s221, s23, s31, s32, s321, s33,
s41, s411, s42, s421, s43, sbl, sb2, sb21, s53,
eal, ea2, eal, ead, eab, ebl, eb2, eb3, eb4, ebb,
gal, qa2, qa3, qa4, gab, gbl, gb2, gb3, gb4, gbb,
alu, a2u, a3u, adu, abu, blu, b2u, b3u, b4u, b5u: real;

Const
L1=0.14+1.2; L2=1.2; L3=0.14; L4=0.1; LO=5.9E-7; g=1.25E-3;
Pi=3.14159265358; ap=0.1; de=1le-7; h=1le-14; e0=0.15083238495;

BEGIN  write(‘ap="); read(ap);
write(‘F="); read(F);
write(‘Vw="); read(Vw);

a:=ap; ewl:=0;

REPEAT a:=a—(ABS(ew1l)/de)*h;

gl1:=sin(Pi/4-a)/n2;
gl:=arctan(gl1/sqrt(1-gllxgl1));

al:=L3/(cos(a)-sin(a)-Vw*(cos(F)-sin(F)));
xyal:=L3+ al*Vw#(cos(F)-sin(F));
xal:=xyalxcos(a)/(cos(a)-sin(a));
yval:i=xyal=sin(a)/(cos(a)-sin(a));

xa21:=(L2-yal+ al*Vw=sin(F))*sin(a)/cos(a);
ya21l:=L2+ al*Vwx*sin(F)-yal;
r21:=Vw=sin(F)*(xa21=sin(a)/cos(a)+ ya2l);
r221:=Vws=sin(F)/cos(a);
r22:=1-r221*r221;
r23:=r21*r21+r22*(xa2l*xa2l+ya2l*ya2l);
a2:=(r21+ sqrt(r23))/r22;
xa2:=xal+ (L2-yal+ (al+ a2)*Vw=sin(F))*sin(a)/cos(a);
ya2:=L2+ (al+ a2)*Vwx*sin(F);

xya31l:=L3+ya2+ (al+a2)*Vwx(cos(F)-sin());
xa31:=sin(a)*xya31/(sin(a)+ cos(a))+ cos(a)*xa2/(sin(a)+ cos(a))-xa?2;
yva31l:=sin(a)*xya31/(sin(a)+ cos(a))+ cos(a)*xa2/(sin(a)+ cos(a))+
-L3-(al+ a2)*Vw#(cos(F)-sin(F))-ya2;
r31:=(xa31*sin(a)-ya31l*cos(a))*Vw*(cos(F)-sin(F))/(sin(a)+ cos(a));
r321:=Vw#(cos(F)-sin(F))/(sin(a)+ cos(a));
r32:=1-r321*r321;
r33:=r31*r31+r32*(xa31l*xa31l+ya3l*ya3l);
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a3:=(r31+ sqrt(r33))/r32;
xa3:=(sin(a)/(sin(a)+ cos(a))*(L3+ ya2+ (al+ a2+ a3)*Vw#(cos(F)-sin(F)))+
+ cos(a)*xa2/(sin(a)+ cos(a));
ya3:=(sin(a)/(sin(a)+ cos(a)))*xya31l+ cos(a)*xa2/(sin(a)+ cos(a))+
-L3-(al+a2)*Vw(cos(F)-sin(F))+
—(cos(a)/(sin(a)+ cos(a)))*a3*Vw=(cos(F)-sin(F));

xya41:=L3+ sqrt(2)xg+ (al+ a2+ a3)*Vw*(cos(F)-sin(F))+
+ sin(Pi/4+ g1)*xa3/cos(Pi/4+ g1)+ ya3;
xad1l:=(cos(Pi/4+ g1)/(sin(Pi/4+ g1)+ cos(Pi/4+ g1)))*xyad1-xa3;
yva41l:=—(sin(Pi/4+ g1)/(sin(Pi/4+ g1)+ cos(Pi/4+ g1)))*xyad 1+
+ sin(Pi/4+ gl)*xa3/cos(Pi/4+ g1);
r411:=xa41*cos(Pi/4+ gl)-yad1=sin(Pi/4+ gl);
r41:=r411#n2+Vw=(cos(F)-sin(F))/(sin(Pi/4+ g1)+ cos(Pi/4+ g1));
r421:=n2xVwx*(cos(F)-sin(F))/(sin(Pi/4+ g1)+ cos(Pi/4+ g1));
r42:=1-r421*rd21;
rd3:=r41*r4 1+ r42*(xadl*xad 1+ yadlxyadl);
a4:=(r41+ sqrt(r4d3))/r42;
xyad:=L3+ sqrt(2)*g+ (al+ a2+ a3+ n2+ad)*Vw*(cos(F)-sin(F))+
+ sin(Pi/4+ g1)*xa3/cos(Pi/4+ gl1)+ ya3;
xad:=cos(Pi/4+ g1)xxyad/(sin(Pi/4+ g1)+ cos(Pi/4+ g1));
yva4:=-sin(Pi/4+ g1)*xyad/(sin(Pi/4+ g1)+ cos(Pi/4+ g1))+
+ va3+ sin(Pi/4+ g1)*xa3/cos(Pi/4+ g1);

xabl:=(L4-(al+ a2+ a3+n2+ad)*Vw=sin(F)+ yad)=sin(a)/cos(a);
vabl:=-L4+ (al+ a2+ a3+ n2*ad)*Vw=sin(F)-ya4;
rb1:=(yabl-xabl*sin(a)/cos(a))*Vwx*sin(F);
r521:=Vw#sin(F)/cos(a);
r52:=1-r521%r521,;

r53:=r51#*r51+ r52#(xabl*xab1l+ yabl#*yab51);
a5:=(r51+ sqrt(r53))/r52;

xab:=(L4-(al+ a2+ a3+ n2+ad+ ab)*Vw=sin(F)+ yad)*sin(a)/cos(a)+ xa4d;
yab:=—L4+ (al+ a2+ a3+ n2*ad+ ab5)*Vwsin(F);

eab:=xab-(al+ a2+ a3+ n2+ad+ a5)*Vw=cos(F);

ewl:=(eab5-e0)/L0;
if a<-0.4 then ewl:=de;

UNTIL ewl<=de;

b:=ap; ew2:=0;

REPEAT b:=b-(ABS(ew2)/de)+h;

g22:=sin(Pi/4+ b)/n2;
g2:=arctan(g22/sqrt(1-g22%g22));

b1:=L3/(cos(b)-sin(b)-Vw*(cos(F)-sin(F)));
xyb1:=L3+ b1#Vwi(cos(F)-sin(F));
xbl:=xybl#*cos(b)/(cos(b)-sin(b));
yb1l:=xybl*sin(b)/(cos(b)-sin(b));

xyb21:=L3+ sqrt(2)*g+ b1*Vw=*(cos(F)-sin(F))+ yb1+
+ sin(Pi/4-g2)*xb1/cos(Pi/4-g2);
xb21:=cos(Pi/4-g2)*xyb21/(sin(Pi/4-g2)+ cos(Pi/4-g2))-xbl;
yb21:=-sin(Pi/4-g2)*xyb21/(sin(Pi/4-g2)+ cos(Pi/4-g2))+
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+ sin(Pi/4-g2)*xb1/cos(Pi/4-g2);
s211:=xb21*cos(Pi/4-g2)-yb21#*sin(Pi/4-g2);
s21:=s211*n2*Vw#(cos(F)-sin(F))/(sin(Pi/4-g2)+ cos(Pi/4-g2));
s221:=n2*Vwx*(cos(F)-sin(F))/(sin(Pi/4-g2)+ cos(Pi/4~-g2));
s22:=1-s221%s221;
$23:=521%s21+ s22*(xb21*xb21+ yb21*yb21);
b2:=(s21+ sqrt(s23))/s22;
xyb2:=L3+ sqrt(2)*g+ (b1+ n2xb2)*Vw*(cos(F)-sin(F))+ yb1+
+ sin(Pi/4-g2)*xb1/cos(Pi/4-g2);
xb2:= cos(Pi/4-g2)*xyb2/(sin(Pi/4-g2)+ cos(Pi/4-g2));
yb2:=-sin(Pi/4-g2)*xyb2/(sin(Pi/4-g2)+ cos(Pi/4-g2))+ yb1+
+ sin(Pi/4-g2)*xb1/cos(Pi/4-g2);
xb31:=L1+ (b1+ n2+b2))*Vw=cos(F)-xb2;
yb31:=(L1+ (b1+n2%b2)*Vwxcos(F))*sin(b)/cos(b)-sin(b)*xb2/cos(b);
s31:=(xb31+ yb31#sin(b)/cos(b))*Vwxcos(F);
s321:=Vw=cos(F)/cos(b);
s32:=1-s321%s321;
s$33:= s31*s31+ s32#(xb31*xb31+ yb31*yb31);
b3:=(s31+ sqrt(s33))/s32;
xb3:=L1+ (b1+ n2+b2+ b3)*Vw=cos(F);
yb3:=(sin(b)/cos(b))*(L1+ (b1+ n2+b2+ b3)*Vwicos(F))+ yb2-sin(b)*xb2/cos(b);

xyb41:=L3+ sqrt(2)*g+ (b1+ n2+b2+ b3)*Vw*(cos(F)-sin(F))+ yb3+
+ sin(b)*xb3/cos(b);
xb41:= (cos(b)/(sin(b)+ cos(b)))*xyb41-xb3;
yb41:==(sin(b)/(sin(b)+ cos(b)))*xyb4 1+ sin(b)*xb3/cos(b);
s 411:=xb41*cos(b)-yb41+*sin(b);
s41:=s411xVw*(cos(F)-sin(F))/(sin(b)+ cos(b));
s421:=Vw*(cos(F)-sin(F))/(sin(b)+ cos(b));
s42:=1-s421%s421,
s43:=s41%s41+ s42%(xb41%xb4 1+ yb41xyb41);
b4:=(s41+ sqrt(s43))/s42;
xyb4:=L3+ sqrt(2)*g+ (b1+ n2*b2+ b3+ b4)*Vw#*(cos(F)-sin(F))+ yb3+
+ sin(b)*xb3/cos(b);
xb4:= cos(b)*xyb4/(sin(b)+ cos(b));
yb4:=-sin(b)*xyb4/(sin(b)+ cos(b))+ yb3+ sin(b)*xb3/cos(b);

xb51:=(L4-(b1+ n2%b2+ b3+ b4)*Vwsisin(F)+ yb4)*sin(b)/cos(b);
yb51:==L4+ (b1+ n2+b2+ b3+ b4)*Vw*sin(F)-yb4;
sb1:=(yb51-xb51*sin(b)/cos(b))*Vwsin(F);
s521:=Vwsin(F)/cos(b);
sb2:=1-sb21%s521;
sb3:=s51#*sH1+ sH2*(xb51*xb51+ yb51*yb51);
b5:=(s51+ sqrt(s53))/s52;
xb5:=(L4-(b1+ n2%b2+ b3+ b4+ b5)*Vw=sin(F)+ yb4)*(sin(b)/cos(b))+ xb4;
yb5:==L4+ (b1+n2%b2+ b3+ b4+ b5)*Vw=sin(F);

eb5:=xb5-(b1+ n2*b2+ b3+ b4+ b5)*Vwicos(F);
ew2:=(eb5-e0)/L0;

if a< -0.4 then ew2:=de;

UNTIL ew?2<=de;
eal:=xal-al*Vw+cos(F);
qal:=yal-al*Vw=sin(F);
ea2:=xa2-(al+a2)*Vw=cos(F);
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qa2:=ya2-(al+a2)*Vwssin(F);
eald:=xa3-(al+ a2+ a3)*Vw*cos(F);
ga3:=ya3-(al+ a2+ a3)*Vw=sin(F);
ead:=xad-(al+ a2+ a3+ n2+ad)*Vwi*cos(F);
gad:=ya4-(al+ a2+ a3+n2+*ad)«Vw=sin(F); qab:=-14
ebl:=xbl-b1*Vw*cos(F);
gbl:=ybl-b1l*Vwsisin(F);
eb2:=xb2-(b1+ n2*b2)*Vw*cos(F);
gb2:=yb2-(b1+ n2*b2)*Vwx=sin(F);
eb3:=xb3-(b1+ n2%h2+ b3)*Vw=*cos(F);
gh3:=yb3-(b1+ n2*b2+ b3)*Vwisin(F);
eb4d:=xb4—-(b1+ n2xb2+ b3+ b4)*Vw*cos(F);
qb4:=yb4-(b1+n2+b2+ b3+ b4)*Vwssin(F); qb5:= -L4;
alu:=sqrt(eal*eal+qgal*qal);
a2u:=sqrt((ea2-eal)*(ea2-eal)+ (qga2-qal)*(ga2—-qal));
a3u:=sqrt((ea3-ea2)+(ea3-ea2)+ (qa3-qa2)*(qa3-qa2));
adu:=sqrt((ead-ead)*(ead—-eal3)+ (qad—qad)*(qad—qal));
abu:=sqrt((eab-ea4)*(eab—-ead)+ (qab-qa4)*(gab—qa4d));

blu:=sqrt(ebl*ebl+gbl*qgbl);

b2u:=sqrt((eb2-eb1)*(eb2-ebl)+ (gh2—-gb1)*(gh2-gbh1));
b3u:=sqrt((eb3-eb2)*(eb3-eb2)+ (qb3-qb2)*(gb3-qb2));
b4u:=sqrt((eb4-eb3)*(ebd—eb3)+ (qb4—-qb3)*(gb4-qb3));
b5u:=sqrt((eb5-eb4)*(eb5-eb4)+ (gh5—gbh4)*(gb5-qbh4));

Rw:=(alu+ a2u+ a3u+ n2*ad4u+ abu-blu-n2+b2u-b3u-b4u-5u)/LO;

write(‘a=",a); writeln;
write(‘b=",b); writeln;
write(‘eab=",eab); writeln;
write(‘eb5=",eb5); writeln;
write(‘fewl=",ewl); writeln;
write(‘ew2=",ew2); writeln
write(‘Rw=",Rw); writeln;
write(‘frac(Rw)="frac(Rw)); writeln;writeln;

END.

Program abIM is designed to calculate pairs of angles («, ) and the relative difference RW

of distances travelled by the rays of light..

IV.2 PROGRAM IntM;

Var

PROGRAM abIM
Const

PROGRAM abIM

BEGIN write(‘a="); read(a);

write(‘b="); read(b);
write(‘F="); read(F);
write(‘Vw="); read(Vw);
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g11:=sin(Pi/4-a)/n2;
gl:=arctan(gll/sqrt(1-gll*gll));

PROGRAM abIM

xab:=(L4-(al+ a2+ a3+ n2+ad+ ab)*Vw=sin(F)+ yad)*sin(a)/cos(a)+ xa4;
yab:i=-L4+ (al+ a2+ a3+ n2*ad+ a5)*Vw=sin(F);
eabi=xab-(al+ a2+ a3+ n2*ad+ ab)*Vw=cos(F);

g22:=sin(Pi/4+ b)/n2;
g2:=arctan(g22/sqrt(1-g22%g22));

b1:=L3/(cos(b)-sin(b)-Vwx*(cos(F)-sin(F)));

PROGRAM abIM

xb5:=(L4-(b1+ n2xb2+ b3+ b4+ b5)*Vwx=sin(F)+ yb4)=(sin(b)/cos(b))+ xb4;
yb5:=-L4+ (b1+ n2+b2+ b3+ b4+ b5)*Vwssin(F);

eb5:=xb5-(b1+ n2*b2+ b3+ b4+ b5)*Vw+cos(F);

eal:=xal-al*Vwi*cos(F);
gal:=yal-al*Vw=sin(F);

PROGRAM abIM

Rrw:=(alu+ a2u+ a3u+ n2*a4u+ aSu-blu—n2+b2u—b3u-b4u-b5u)/L0;

ew:=ABS(eab-eb5)/L0;

write(‘eab=",eab); writeln;
write(‘eb5=",ebb); writeln;
write(‘ew=",ew); writeln;
write(‘Rrw=",Rrw); writeln;writeln;

END.

PROGRAM IntM is designed to calculate the following (Table 8):
1) The coordinates € € of non—-approximated points A5, B5 .

2) Relative distance | €. ~€. I/A0 of points A_,B, .

3) Relative difference RrW of distances travelled by the light rays reaching

mutually distant points As’ 85 of the screen M.
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IV.3 PROGRAM: abln

The following symbols were adopted and used in the program:

Vw =V /IC . awl = (Ga3—0o)/4o » aW2= (Gps—Go)/4 , LO =4,
g thickness of the semi-transparent PP plate,
g2 angle Yy
ap adopted value of angle a,
a angle «o ,
b angle g,
h increment of a, B angles,
F angle @,
de a very small positive number used for calculations.

Angles given in radian measure.

In PROGRAM abln the following values were used:

ap=0.2 rad | h=10""rad, de=10". V, =1244.10"".
Shifts of interference fringes are determined with respect to point Mo with a coordinate
go= 0.0314 m.

After introducing the value of F variable into the program, the calculations end when the
conditions of the approximations of points A, B3 to point M are satisfied:

gwl < de and qgw2 =< de.
Then | aqwl | =1 (Qas—0o)/4 | <1077  and law2 | = (Gp3— o)/ 4 | <1077

Following values were used in calculations:
1) Basic dimensions of the interferometer—-Fig.Sd1:

L1:L3+1.2m y L2:0.8m, L3:O.14m,
e,=015m,
a,= 25° inclination of the mirror Z to the arm L, ,

g=125- 1073 m thickness of PP plate,

2) The wavelength of light in a vacuum 4, =5.9.-10"" m,
3) The PP plate refractive index with respect to a vacuum n, =1.52.

Programs are written in TURBO PASCAL 7.
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PROGRAM abln;
Var
a, ap, b,Vw, h, de, ew, ewl,ew2, Rw, g2, g22,
al, a2, a3, bl, b2, b3, a2l, a22, a3l, a32,
xal, xa2, xa3, xa2l, xa3l, xbl, xb2, xb3, xb21, xb31,
val, ya2, ya3, ya2l, ya3l, ybl, yb2, yb3, yb21, yb31,
xyal, xya3l, xybl, xyb2,
r2l1, r22, r221, r23, r31, r32, r321, r33,
s21, s211, s22, s221, s23, s31, s32, s321, s33,
eal, ea2, ea3, ebl, eb2, eb3, qal, qa2, qa3, gbl, gb2, gb3,
alu, a2u, a3u, blu, b2u, b3u : real;

Const
L1=0.14+1.2; L2=0.8; L3=0.14; LO=5.9E-7; g=1.25E-3;
q0=0,0314; az=0,436332313; ez=0,15;
Pi=3.14159265358; ap=0,2; h=1E-14; de=1E-7;
BEGIN
write(‘F="); read(F);

REPEAT a:=ap; aqwl:=0;
a:=a—-(ABS(qw1)/de)*h;
al:=L3/(cos(a)-sin(a)-Vw*(cos(F)-sin(F)));
xyal:=L3+ al*Vw#(cos(F)-sin(F));
xal:=xyal=cos(a)/(cos(a)-sin(a));

yal:=xyal=*sin(a)/(cos(a)-sin(a));
a2l:=yal-L2-al*Vwsx=sin(F)+ sin(az)*(ez-xal+ al*Vw=cos(F))/cos(az);
a22:=sin(az)*(sin(a)-Vw#cos(F))/cos(az)+ Vw*sin(F)-cos(A);

a2:=a2l/a22;

xa2:=xal+ a2xsin(a);

yva2:=cos(a)*(xa2-xal)/sin(a)+ yal;
a3l:=cos(2*az+ a)*(xa2-L1-(al+ a2)xVw=cos(F))/sin(2*az+ a);
a32:=cos(2*az+ a)*Vwxcos(F)/sin(2*az+ a)-cos(2*az+ a);

a3:=a31/a32:
xa3:=L1+ (al+ a2+ a3)*Vw+cos(F);
va3:i=ya2-a3*cos(2*az+a);
ga3:=ya3-(al+ a2+ a3)*sin(F);
qgwl:=(qa3-q0)/L0;
if a<le-6 then qwl:=de;
UNTIL qwl<=de;

b:=ap; qw2:=0;
REPEAT b:=b-(ABS(qw?2)/de)+*h;
g22:=sin(Pi/4+ b)/n2;
g2:=arctan(g22/sqrt(1-g22%g22));
b1:=L3/(cos(b)-sin(b)-Vw+(cos(F)-sin(F)));
xyb1:=L3+b1l*Vwi*(cos(F)-sin(F));
xbl:=xybl*cos(b)/(cos(b)-sin(b));
yb1l:=xybl*sin(b)/(cos(b)-sin(b));
xyb21:=L3+ sqrt(2)xg+ b1*Vw=(cos(F)-sin(F))+ yb1l+
+ sin(Pi/4-g2)*xb1/cos(Pi/4-g2);
xb21:=cos(Pi/4-g2)*xyb21/(sin(Pi/4-g2)+ cos(Pi/4-g2))-xb1;
yb21:=-sin(Pi/4-g2)*xyb21/(sin(Pi/4-g2)+ cos(Pi/4-g2))+
+ sin(Pi/4-g2)*xb1/cos(Pi/4-g2);
s211:=xb21*cos(Pi/4-g2)-yb21#*sin(Pi/4-g2);
s21:=5211*n2+Vw#(cos(F)—-sin(F))/(sin(Pi/4-g2)+ cos(Pi/4-g2));
$221:=n2xVwx(cos(F)-sin(F))/(sin(Pi/4-g2)+ cos(Pi/4-g2));
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s22:=1-s221%s221;
s$23:=s21#%s21+ s22%(xb21%xb21+ yb21*yb21);
b2:=(s21+ sqrt(s23))/s22;
xyb2:=L3+ sqrt(2)*g+ (b1+ n2%b2)*Vw*(cos(F)-sin(F))+ yb1+
+ sin(Pi/4-g2)*xb1/cos(Pi/4-g2);
xb2:= cos(Pi/4-g2)*xyb2/(sin(Pi/4-g2)+ cos(Pi/4-g2));
yb2:=-sin(Pi/4-g2)*xyb2/(sin(Pi/4-g2)+ cos(Pi/4-g2))+ yb1l+
+ sin(Pi/4-g2)*xb1/cos(Pi/4-g2);
xb31:=L1+ (b1+ n2+b2))*Vw+cos(F)-xb2;
yb31:=(L1+ (b1+ n2%b2)*Vwxcos(F))*sin(b)/cos(b)-sin(b)*xb2/cos(b);
s31:=(xb31+ yb31=sin(b)/cos(b))*Vwxcos(F);
s321:=Vwxcos(F)/cos(b);
s32:=1-s321%s321;
s$33:= s31*s31+ s32#(xb31*xb31+ yb31*yb31);
b3:=(s31+ sqrt(s33))/s32;
xb3:=L1+ (b1+n2#b2+ b3)*Vw*cos(F);
yb3:=(sin(b)/cos(b))*(L1+ (b1+ n2%b2+ b3)*Vwcos(F))+ yb2+ sin(b)*xb2/cos(b);
gh3:=yb3—-(b1+ n2*b2+ b3)*Vw#sin(F);
qw?2:=(qb3-q0)/L0;
if a< le-6 then qw2:=de;
UNTIL qw2<=de;
eal:i=xal-al*Vwxcos(F);
gal:=yal-al*Vwsisin(F);
ea2:=xa2-(al+ a2)*Vwi*cos(F);
ga2:=ya2-(al+a2)*Vws=sin(F);
ea3:=xa3-(al+ a2+ a3)*Vw*cos(F);
ga3:=ya3-(al+ a2+ a3)*Vw+sin(F);
ebl:=xb1-b1*Vw=cos(F);
gbl:=ybl-b1*Vws=sin(F);
eb2:=xb2-(b1+ n2b2)*Vwicos(F);
gb2:=yb2-(b1+ n2*b2)*Vw:=sin(F);
eb3:=xb3-(b1+ n2*bh2+ b3)*Vw+cos(F);
gb3:=yb3-(b1+ n2%h2+ b3)*Vwsin(F);
alu:=sqrt(eal*eal+qal*qal);
a2u:=sqrt((ea2-eal)*(ea2-eal)+ (qa2-qal)*(ga2—-qal));
a3u:=sqrt((ea3-ea2)*(ea3-ea2)+ (qa3-qa2)*(qga3—-qa2));
blu:=sqrt(ebl*ebl+ gbl*qgbl);
b2u:=sqrt((eb2-eb1)*(eb2-ebl)+ (gb2-gb1)*(gb2-qb1));
b3ui=sqrt((eb3-eb2)*(eb3-eb2)+ (gh3—-gbh2)*(gh3-qbh2));
Rw:=(alu+ a2u+ a3u-blu-n2+b2u-b3w)/LO;

write(‘a=",a); writeln;
write(‘b=",b); writeln;
write(‘qa3=",qa3); writeln;
write(geb3=",qb3); writeln;
write(‘'Rw=",Rw); writeln;
write(‘frac(Rw)=",frac(Rw)); writeln; writeln;

END.

Program abln is designed to calculate pairs of angles (a, ) and the relative difference

distances travelled by the rays of light (interferometer-Fig.Sd1).
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V.4 PROGRAM VolVo2

Symbols used in the program:

a ALFAs, v NI (true anomaly),
a,,  ALFAzs, o FIL

a, ALFAse, A LAMBDA,
au  ALFAsel, 7, ETAL
5,  DELTAzs n,  ETA2,

. DELTAse, ns  ETA3,

el DELTAsel, o ETAO

& EPSILON,

7 PSI,

o OMEGA,

In this program angles were given in degree ..° measures in decimal system .
Program was written in TURBO PASCAL 7.

PROGRAM VolVo2;
Var
b, ETAO, ETA1, ETA2, ETA3, NI, PSI, g3, k1, k2, k11, k22, k33,
ALFAs, ALFAzs, ALFAse, ALFAsel,
DELTAse, DELTAsel, DELTAzs, GHAaries, LHAzs, LHAse, LHAsel,
Hzs, Hse, Hsel, HO1, HO2,
Azs, Ase, Asel, AO1, A02,
dzs, dse, dsel,
zzs, zse, zsel, z01, z02,
Vzs, Vse,
Vru2, Vzsul, VzsuZ2, Vzsu3d, Vseul, VseuZ2, Vseud,
Vselul, Vselu2, Vselu3,
VO1ul, VO1lu2, VO1lu3, VO2ul, VO2u2, VO2u3, V01, V02,
hl, h2, h3, h4, hb, azl, az2, az3, az4, az5 : real;

Const
Pi=3.14159265358; CO0=3Eb;
a=149597E3; e=0.01671; EPSILON=0.4090877;
R=6378.1; OMEGA=7.292115E-5; Trg=365.256366; Trz=365.242199;
ALFAse=3%Pi/2; ALFAsel=Pi/2; DELTAse=Pi/2-EPSILON;
DELTAsel= —(Pi/2-EPSILON);

BEGIN write(‘FI="); read(FD);
write(‘LAMBDA="); read(LAMBDA);
write(‘(ALFAs="); read(ALFAs);
write(‘GHAaries="); read(GHAaries);
write(‘NI="); read(ND);

FI:=FI*Pi/180; LAMBDA:=LAMBDA=*Pi/180;
ALFAs:=ALFAs*Pi/180; GHAaries:=GHAaries*Pi/180; NI:=NI*Pi/180;
b:=sqrt(a*a-sqr(e*a));
g3:=e*(1+ excos(NI))/(sin(ND*(1-ex*e));
ETA3:=arctan(-sqr(b/a)*(g3+ cos(NI)/sin(N1)));
ETA2:=ABS(ETA3); ETAO:=arctan(b/(e*a));
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if NI>O then begin if NI<=Pi-ETAO then  PSI:=NI+ETAZ; end;
if NI>Pi-ETAO then begin if NI<Pi then  PSI:=NI-ETAZ; end;
if NI>Pi then begin if NIK=Pi+ ETAO then  PSI:=-Pi+ NI+ ETAZ; end;
if NI>Pi+ ETAO then begin if NIKZ2#Pi then  PSI:i=-Pi+ NI-ETAZ; end;

k1l1l:=arctan(sin(ALFAs)/(cos(ALFAs)*cos(EPSILON)));
if ALFAs>1.487E-2 then begin if ALFAs<Pi/2 then kl1:=kl1; end;
if ALFAs>Pi/2 then begin if ALFAs<3#Pi/2 then kl:=Pi+kll; end;
if ALFAs>3#Pi/2 then begin if ALFAs<2+#Pi then kl1:=2%Pi+kll; end;

k2:=k1-PSI,
k22:=arctan(sin(k2)*cos(EPSILON)/cos(k2));
if k2>-Pi/2 then begin if k2<Pi/2 then ALFAzs:=k22; end;

if k2> Pi/2 then begin if k2<3#Pi/2 then ALFAzs:=Pi+k22; end;

k33:=sin(k2)*sin(EPSILON);
DELTAzs:=arctan(k33/sqrt(1-k33%k33));
LHAzs:=GHAaries—ALFAzs+ LAMBDA;
hl:=cos(DELTAzs)*cos(FD*cos(LHAzs)+ sin(DELTAzs)*sin(FD;
Hzs:=arctan(h1/sqrt(1-h1%h1));
dzs:=(sin(DELTAzs)-sin(Hzs)*sin(F1))/(cos(Hzs)*cos(FI));
zzs:=dzs/ABS(dzs);
azl:=cos(DELTAzs)*sin(LHAzs)/cos(Hzs);
Azs;=(Pi/2)*(3+ zzs)—zzs*arctan(azl/sqrt(1-azl*az1));
Vzs:=2#%Pixa*(1+ e*cos(NI))/(Trg*24*3600*sqrt(1-e*e)*sin(PSI));

LHAse:=GHAaries—-ALFAse+ LAMBDA;
h2:=cos(DELTAse)*cos(FD*cos(LHAse)+ sin(DELTAse)*sin(FD);
Hse:=arctan(h2/sqrt(1-h2+h2);

dse:=(sin(DELTAse)-sin(Hse)*sin(FI))/(cos(Hse)*cos(FD);

zse:=dse/ABS(dse);

az2:=cos(DELTAse)*sin(LHAse)/cos(Hse);
Ase:=(Pi/2)#(3+ zse)-zse*arctan(az2/sqrt(1-az2+az2));

LHAsel:=GHAaries—ALFAsel+ LAMBDA;
h3:=cos(DELTAsel)*cos(FD*cos(LHAse1)+ sin(DELTAse1)*sin(FI);
Hsel:=arctan(h3/sqrt(1-h3+h3));
dsel:=(sin(DELTAsel)-sin(Hse1)*sin(FI))/(cos(Hsel)*cos(FI));
zsel:=dsel/ABS(dsel);
az3:=cos(DELTAsel)*sin(LHAsel)/cos(Hsel);
Asel:=(Pi/2)*(3+ zsel)-zsel*arctan(az3/sqrt(1-az3*az3));

Vse:=Co*0.748E-4;

Vru2:=OMEGA#R*cos(FI);
Vzsul:=Vzs*cos(Hzs)*cos(Azs);
Vzsu2:=Vzs*cos(Hzs)*sin(Azs);

Vzsu3:=Vzs*sin(Hzs);

Vseul:=Vsexcos(Hse)*cos(Ase);

Vseu2:=Vsexcos(Hse)*sin(Ase);

Vseu3:=Vsexsin(Hse);
Vselul:=Vsexcos(Hsel)*cos(Asel);
Vselu2:=Vsex*cos(Hsel)*sin(Asel);

Vselu3:=Vse*sin(Hsel);
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VOlul:=Vzsul+ Vseul;
VO01lu2:=Vru2+ Vzsu2+ Vseu2;
VO01lu3:=Vzsu3d+ Vseu3;
VO1:=sqrt(sqr(VOlul)+ sqr(VO1lu2)+ sqr(V01lu3));
h4:=V01u3/V01;
HO1:=arctan(h4/sqrt(1-h4+h4));
z01:=V01ul/ABS(VO1lul);
az4:=vV01u2/(VOl*cos(HO1));
A01:=(Pi/2)%(3+ z01)+ zO1*arctan(az4/sqrt(1-az4d*az4));

V02ul:=Vzsul+ Vselul;
V02u2:=Vru2+ Vzsu2+ Vselu2;
VO02u3:=Vzsu3d+ Vselus;
V02:=sqrt(sqr(VO2ul)+ sqr(V02u2)+ sqr(V02u3)):
h5:=V02u3/V02;
HO2:=arctan(h5/sqrt(1-h5+h5));
2z02:=V02ul/ABS(VO2ul);
az5:=vV02u2/(V02+cos(H02));
A02:=(Pi/2)*(3+ z02)+ z02+arctan(az5/sqrt(1-az5*az5));

HO1:=HO1%180/Pi; A01:=A01%180/P1i;
HO2:=H02+180/P1; A02:=A02+180/P1;
if AO0I>360 then A01:=A01-360;
if A02>360 then A02:=A02-360;

write(‘Vzs=",Vzs); writeln;

write(‘Hzs=",Hzs); writeln;

write(‘Azs=",Azs); writeln;writeln;
write(‘Vo=V01=",V0O1); writeln;
write(‘(HO1=",HO1); writeln;
write(‘A01=",A01); writeln;writeln

write(‘Vo=V02=",V02); writeln;

write(‘HO2="H02); writeln;

write(‘A02=",A02); writeln;writeln;

END.

PROGRAM Vol1Vo?2 is designed to calculate the coordinates of velocities \7ZS , \701 (2.1) and

\702 (2.2) in the horizontal system.
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IV.5 PROGRAM VzeVse

Symbols used in this program:

€ EPS , , ETAO , w OMEGA,
7 PSI , , ETAZ , Rpa(T/Z) Rpa ,
o  FI , n, ETA3, Ronct 12 Rba .

v NI (true anomaly),

PROGRAM VzeVse;
Var
b, g3, ETAO, ETA, ETA2, ETA3, NI, PSI,
Vzs, Vze, Vse, Vra, d, d1, dO, Rpa, Rba : Real;
Const
Pi=3.14159265358;
a=149597E3; e=0.01671; EPS=0.4090877; R=6378.1; Trg=365.256366; T=86164.1;
OMEGA=7.292115E-5; Co=3Eb; ETA1=0.2295132; FI=0.882554825;

BEGIN  write(‘Rpa="); read(Rpa);
write(‘NI="); read(ND); NIL:=NI*Pi/180;

b:=sqrt(a*a-sqr(e*a));
g3:=ex(1+ excos(NI)/(sin(ND#*(1-exe));
ETA3:=arctan(-sqr(b/a)*(g3+ cos(NI)/sin(ND)));

ETA2:=ABS(ETA3); ETAOQ:=arctan(b/(e*a));
if NI>O then begin if NIK=Pi-ETAO then PSI:=NI+ ETAZ; end;
if NI>Pi—-ETAO then begin if NIKP1 then PSI:=NI-ETAZ2; end;

if NI>Pi then begin if NIK=Pi+ ETAO then PSI:=-Pi+ NI+ ETA2; end;

if NI>Pi+ ETAO then begin if NI<K2#Pi then PSI:=-Pi+ NI-ETAZ2; end;
Vzs:=2%Pixa(1+ e*cos(NI))/(Trg*24+3600%*sqrt(1—e*e)*sin(PS]));
Vra:=OMEGA*R*cos(FD);

if NI>O then begin if NI<K=Pi-ETAO then ETA:=Pi-ETAZ; end;

if NI>Pi-ETAO then begin if NI<Pi then ETA:=Pi+ ETAZ; end;

if NI>Pi then begin if NI<K2xPi then ETA:=ETAS; end;

Vse:=0; d0:=1E-5;
REPEAT Vsei=Vse+d*1E-1;

dl:=(Vzs*sin(EPS)*cos(ETA+ ETA1)+ Vse*cos(EPS))/sqrt(Vzs*Vzs+ Vse*Vse);
d:=ABS(2%Pi*Co*Co*Rpa/(Vra*T)-Pi*Vra/4-sqrt(Vzs*Vzs+ Vse*Vse)=*
cos(arctan(d1/sqrt(1-d1xd1))));
if d>25 then d:=0.5%d0;
UNTIL d<do0; Vze:= sqrt(Vzs*Vzs+ Vse*Vse);

write(‘ Vze=',Vze); writeln;
write( Vse='",Vse); writeln; writeln;
END.

PROGRAM VzeVse calculates the absolute speeds of the Earth (Vze) and the Sun (Vse).
The variables d1, d in REPEAT should correspond to individual equations (3.84), (3.85),
(3.89), (3.90).

In REPEAT the equations (3.84) was included.

Table 14 contains results obtained from equations (3.84), (3.85) (calculated with method I ).
Table 15 contains results obtained from equations (3.89), (3.90) (calculated with method II).
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RESULTS AND CONCLUSIONS

Michelson’s experiments and the values of interference fringe shifts calculated with the
mathematical model confirm the notion of both the existence of the aether and the
applicability of the Galilean transformation. The speed of light in an inertial system depends
upon the velocity of that system with respect to the aether. By observing shifts of
interference fringes, the absolute speed V, of the interferometer can be determined. Hence it

1s possible to build a speedometer which can measure the absolute speed of an inertial
system (of a spaceship, for example) with no need for the system be linked with any external
frame for reference.

Based on the calculation results, which can be found in the tables, the absolute speed of the
interferometer on the Earth’s surface was determined and expressed with respect to the
speed of light as follows:

10% <V, /Cy<2-107* (1.124).
Just as J. C. Maxwell had predicted, the speeds of the Earth, the Sun and our Galaxy centers
with respect to the aether were determined by measuring optical phenomena alone.

The values of the interference fringe shifts (see Tables 2-5) can be tested in a very simple
experiment. All that needs to be done is to place the Michelson’s interferometer in a
spaceship traveling at the absolute speed that is specified and linked to the speed of light by
the inequality:

Vy/Cy>2-107"
If we consider a changeable mass of a particle (Chapter III), Newton’s second law of motion is
non-invariant with respect to the Galilean transformation, which effectively means that
Newton’s laws of mechanics are different in systems 1 and 2 if the variable mass of a
particle is considered. Hence the absolute speed of an inertial system can be determined with
the help of mechanical experiments performed inside that system (the spaceship).
The above results from the equations (3.13a), (3.13b) and (3.13¢c) see Fig. 12.

In this work it was also shown that knowing the difference in times measured by atomic
clocks situated on the Earth’s surface, the absolute velocities of the Earth and the Sun can be
calculated. The elongation of the Earth's sidereal day with respect to the time measured by
atomic clocks was evidenced as being merely apparent. The clock in system 2 runs slower
when compared to an identical clock in the preferred system 1. The lifetime of unstable
particles in system 2 is longer than the lifetime of identical particles in the preferred
system 1.
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SUPPLEMENT

S.I THE VELOCITIES OF THE EARTH AND THE SUN’S CENTERS WITH RESPECT
TO THE AETHER

The changes in the length of the Earth’s day [9] include the following:
— a linear trend, which brings about the elongation of the Earth’s day by about 1.8s per

100 years i.e. 18s per million years.
— long-term component of around 1ms. amplitude.
The remaining components of the day’s length variability are periodical (oscillating).

In our opinion, in reality the long—term component of the Earth’s day variability is only
apparent and follows the equation (3.61):

Rt :%(VO 1C)?y1-(V,/Cy)? T . Then it needs to be assumed: Ry =1ms

T =86164.091 s
After the equation (3.61) is transformed, we obtain:

R
Vo /Cy =2 ﬁ because 1-(Vo/Cy)? =1, as V,/Cy<<1l. Hence

-3
Vo /Cy = 2 _ 107 1om10t Vo=V,, SO
3-86164.091

(S.1) V,e /Cy =~ 1.244.107*
The quotient V,, /C, specifies the speed of the Earth’s center with respect to the aether,
expressed in relation to the speed of light C,.

The value obtained from calculation V,, /Cy ~ 1.244-10* fits the interval (1.126):

107* <V, /Cy< 210" | determined with the use of Albert Michelson's interferometer.

Therefore, by using the results of the Earth’s rotation observation with atomic clocks the
speed of the Earth’s center can be calculated with relation to the aether.

The speed V, of the Sun’s center with respect to the aether, expressed in relation to the
speed of light C, , equals:
(S.2) Vg, /Cy ~ 0.7546-107* (Tables 14 and 15, item 3).

The given value Vg /Cy~ 0.7546-10™* fits the interval (1.127): 0 <V, /C, < 1.73-107%,
determined with the use of the Albert Michelson’s interferometer.
Now the direction of both the absolute Sun’s velocity (+\73e, —\739, Fig. 8) and of the

velocities Vg (2.1), Vg, (2.2) can be calculated.

Method I (Table 14, item 3):

There are velocities +\75e ) \701 (2.1), when the difference of times measured by atomic
clocks during the experiment equals Ry, 1,2 = 0.8305-10° s , or

there are velocities —\75e , \702 (2.2), when the difference of times equals

Rpa(r/2) ~ 1.6421:10° s .

Method II (Table 15, item 3):

There are velocities +\73e ) \701 (2.1), when the difference of times measured by atomic clocks
during the experiment equals Ry, 12 =1.6401-10° s , or

there are velocities —\75e , \702 (2.2), when the difference of times equals

Roa(r/2) = 3.2615-107° s.
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ST THE DURATION OF ASTRONOMICAL WINTER

Anm)
-Q 0
Bﬂ( M+1) |-b
Fig. Sa The locations of the Earth at the start of astronomical winters and at spring
equinoxes.
SYMBOLS: a average distance Earth-Sun,
b small semi—-axis of the Earth’s orbit,
S, the center of the Sun,
A location of the Earth at the start of astronomical winter,
B, location of the Earth at spring equinox,
(20) year 2010, 1y year 2011,
(m) a year, when the duration of astronomical winter is the shortest,
(m+1) the following year,
(M) a year, when the duration astronomical winter is the longest,

(M +1) the following year.

) 0 0 0
Angles: 4£(Ay10) Sn Br(11)) ®90°,  £(Ay(m) Sn Bi(ma)) =907,  £L(Aymy Sn Byma)) =90,
The above angles are smaller than 90° by the precession angle in the eclipse during
astronomical winter.

Angle 7, =4(a S, A)) determines the Earth’s location on its orbit around the Sun at the start

of astronomical winter.
Angle 7, increases every year by the precession angle p.

Annual precession p in ecliptic (in longitude) equals: p =50 292/T,, :00.01397/TIrz ,
where: T,, tropical year.

Year 2008, 2009 (example on page 46):
(S.3) ms) =13°.212402

(S.4) T, () =88°23"40™ =88.986111 days

where: T, the duration of astronomical winter.
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Year 2010, 2011 (example on page 73):
(S.5) oy = 13°.1501154,

(S.6) T, (10 = 887 23"42™.2 =88.9876388 days

Year m, m+1:

— 45° —13°. 1501154
(S.7) (m) =45° pnl(m) o) _ 45" ~13. 150115 =2280T,, , soO

P 0°.01397/T,,

(S.8) m = 2010+ 2280 = 4290
The duration of astronomical winter can be determined from the equation (2.17):
T, (m) =t(90° —=Ap—17;(my) —t(360° — 7(;n)),  hence
(S.9) T,(m) = 88.587430398 days
Therefore 4290 will be the year when the duration of astronomical winter will be the
shortest: 88.587430398 days

Up to the year 4290 the duration of astronomical winters will be diminishing, thus for each
year N throughout that period the following inequalities are fulfilled:

(5.10) Mn+1) = T(n)
(S.1D) Tz(n+1)<TZ(n)

Angles (S.3), (S.5) as well as the times (S.4), (S.6) have been determined with the
astronomical winters and spring equinoxes starting time known and given in the Astronomical
Annals of the Instytut Geodezji i Kartografii [Institute of Geodesy and Cartography]:

Moy < Th(s)
T,0)> Tas)
These inequalities are in opposition to inequalities (S.10), (S.11), which leads to the

conclusion of possible discrepancies in the Annals.
The discrepancies affect the accuracy of the results of calculations on page 46 and 73.

Year M, M +1:

(S.12) Moy = 225° Thm) - Thao) _ 22500—130.1501154 <15165T, . then
p 0. 01397/T,,
(S.13) M = 2010+15165=17175
The duration of astronomical winter can be determined from the equation:
(S.14) T, m) = Trg L)+t (v+90°) where: v =360° -7y, =135°,
t(v) function (2.13)
Trg stellar year.
Therefore
(S.15) T,(m) ~ 94.086078982 days .

Thus 17175 will be the year when the duration of astronomical winter will be the longest:.
94.086078982 days .

From 4290 to 17175 the durations of astronomical winters will be increasing, so for each year
n during that period the following inequalities are fulfilled:

(S.16) M(n+1) > Thn)
(S.17) Ty > To(ny

The calculations were carried out assuming constant parameters of the Earth’s movement on
its orbit.
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S.II

DETERMINING THE ALTITUDE AND THE AZIMUTH OF THE EARTH’S
CENTER VELOCITY

Pages 40, 42, 43 give the formulas to calculate the altitudes and the azimuths of the Earth’s

center velocity: Vi, Ve, V. These will be marked as V velocity.

The formulae will be derived with the letter H denoting the altitude of the Earth’s center

velocity V' (Fig.Sb2) and the letter A denoting the azimuth of the velocity.

pia Ny

%

Fig.Sb1l Azimuth A and zenith altitude Z of the Earth’s center velocity V .

SYMBOLS:
(e} the center of the globe,
Ip vertical line running through the center of the globe and the U point on the globe (Fig. Sb2) in
whih the observer is located,
i velocity \725 at which the Earth’s center travels around the Sun (Fig. 6, 7) or velocities
\759 , \7561 of the Sun’s center with respect to the aether, which are also the velocities of the
Earth’s center (Fig. 8 ),
A azimuth of the Earth’s center velocity V ,
P, a point at which the vertical line Ip cuts through the celestial sphere,
P, a point at which the direction line of velocity V cuts through the celestial sphere,
¢, A coordinates of the R, point,
GHA  Greenwich Hour Angle of the Earth’s center velocity vV,
LHA  Local Hour Angle of the Earth’s center velocity V ,
5  declination of the Earth’s velocity V ,
z zenith altitude (angle) of the Earth’s center velocity V ,
1 celestial equator,
2 celestial meridian of the observer, which runs through the B, point,
3 meridian which runs through the P point,
4 hour semi-circle which runs through the R, point,
5 semi-circle which runs through the vertical line Ip and point R, ,
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6 Greenwich meridian,
P point located on the circumference of the semi-circle (item 5),
®p, L coordinates of the P point,

Fig.Sb2 Zenith altitude Z and the altitude H of the Earth’s velocity V .
SYMBOLS: the globe center,
the globe,

0]
7
z zenith altitude of the Earth’s center velocity V ,
H
U

altitude of the Earth’s center velocity V ,
point (location) on the globe in which the observer is located,
Pha plane of celestial horizon (plane’s projection),
Ph plane of the Horizon, which runs through the U point (plane’s projection),
S5 Ip, By, Ry as described in Fig.Sb1 .

The following unit vectors can be defined (Fig.Sb1):

(S.18) OPy =[ 0, 0, 1]
(S.19) OR, =[ cosg, 0, sing ]
(S.20) OR, =[ coss cos LHA, coso sin LHA| sinog ],

where: LHA=GHA+A
The modulus of the unit vectors:

THE ALTITUDE H OF THE EARTH’S VELOCITY V .

Zenith altitude Z of the Earth’s center velocity V. can be determined from the scalar product
of the vectors (S.19), (S.20).

cosZ =% =C0sd cosg CosLHA+sIn & sin g
Fig.Sb2 shows the relationship:

Z=90"-H, then

cosZ =cos(90° -~ H)=sinH, so
(S.22) sin H =cosd cosg cosLHA +siné sin ¢

Hence the altitude H of the Earth’s center velocity V is equal to:
(8.23) H =arcsin(coss cose cosLHA +sind sing)
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AZIMUTH A OF THE EARTH’S VELOCITY V .

dl cos

Fig.Sb3 Azimuth A of the Earth’s velocity V .

SYMBOLS:

A azimuth of the Earth’s center velocity V. (Fig.Sb1),
8  meridian,
9 parallels of altitude,

2,5 PR, R as described in Fig.Sb1l.

We select any point P on the circumference of the semi-circle (Fig.Sb1, item 5) near
the R, (@, A) point.

The coordinates of point P are ¢,,L. Hence we have point P(p,,L).

A unit vector OP:

(U.24) OP =[ cosg, cosl , cosg, sin L, sing, ]

Let us draw a vector V\7V perpendicular to semi-circle which runs through points R;, R, , P
and the vertical line Ip. Vector VV\, 1s hence perpendicular to vectors OFa’U , OISV , OP .

Vector VV\, can be obtained with the vector product of the vectors (S.19), (S.20):

(5.25) Vvv ZOISU XOﬁV =[ Wy, W5, Wys ], where:
(S.26) Wy, = —cosd sin ¢ sin LHA

(S.27) Wy, = c0sS sing cosLHA —sind cose

(S.28) Wy = €0sS cose sin LHA

Then, by applying the scalar product of vector VV\/ and vector OP the equation of the semi-
circle circumference can be obtained: V\7V .OP =0, SO

Wy, COS@, cosL+W,, COSp, sinL +W, 5 Sing, =0 , which after transformation
takes the form of the following equation: W,y cosL+W,, sinL +W, ; tgp, =0

After the above is differentiated, we obtain:

(S.29) (W, sin L+W,,, cosL)dL +W,4 d

- @
$2 o, p
If the P(pp,L) point (Fig.Sbl) heads towards Py (¢, 4), then ¢, >¢ i L—>0, so

=0

sinL—>0, cosL—1
Consequently the equation (S.29) takes the form:
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1

Wy ,dL+Wy3 ——dp =0 , hence after transformation:
cos” ¢
W,
(S.30) dl=—""—do¢
W, , cos® @

From Fig.Sb3 results the following relationship:
dLcose

JdLcosg)? + (dp)?
Having considered the (S.30) equation and transformed the above equation we have:
“Wy3

\/WV23 +W2, cos? o

After considering coordinates (S.27), (S.28) we obtain:

. —C€0sJ cose sin LHA
sin A= 14 =

J(cos cospsin LHA)? + (cosdsin ¢ cos LHA—sin 5 cosg)? cos? ¢

sin A= , where: A azimuth of the Earth’s center velocity V .

sin A=

_ —cosocosgsin LHA  —cosd

Jcos? H cos? ¢

—C0So
cosH
Let us now determine COSA.

sin LHA

and ultimately :

(S.31) sin A= sin LHA

We start with drawing a vector \/\7N perpendicular to the plane of the celestial meridian of the
observer. This meridian runs through points Ry,Py . Vector WN 1s therefore perpendicular to

vectors OlSU ,O|5N . Vector WN can be obtain by applying the vector product of vectors
(5.18), (S19).

(S.32) Wy =OR, xOPy =[ Wy, ,  Wya , Wys 1 where:
WNl :0 ’ WN2 :_COS(D y WN3 :0 ) thel’l
(S.33) Wy =[ 0, —cosg, 0]

The azimuth of the Earth’s velocity V is the angle between the plane of the observer’s
celestial meridian and the semi-circle that runs through points R,,R, and the vertical line Ip.

The azimuth of the Earth’s center velocity V is then also an angle between vectors

Wy (S.25), Wy (S.32). Hence

Wy Wy

Wy, Wy

The scalar product of vectors (S.25), (S.33): Wy, Wy, = (c0s sin pcos LHA—sin 5 cosg) (—cosep)
Hence after transformation and adoption of equation (S.22) we obtain:

(S.35) W, -Wy, =sin & — sin Hsin ¢

The modulus of the vector Wy (S.25): Wy =W + W2 + Wi

After considering the coordinates from (S.26), (S.27), (U.28) and the relationship (S.22), the
following can be obtained:

(S.36) W, =+/cos® H =cosH

The modulus of the vector Wy (S.33): Wy :\/W,\fl +Wi, W2, :\/(—COSgo)2 =C0Sp, SO
(8.37) Wy =cos¢

Ultimately, after introducing scalar product (S.35) and modulus (S.36) and (S.37) to equation
(S.34), we obtain:

(S.38) cosA=

(S.34) COsA=

sind—sinH sing
cosH cose
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SV THE SPEEDS OF THE EARTH AND THE LIGHT WITH RESPECT
TO THE AETHER

The speed of light C in a vacuum with respect to an inertial system depends on the system’s
speed V, with respect to the aether and to the direction light is travelling in that system. The

C speed can be defined by the equation (3.7):
(8.39) C(a,,)=Cy [\/1— (Vo /Co)zs'in2 oy — (VolCp)cosa,,] ,  as Vypy =C,

where: C, speed of light in a vacuum with respect to the aether,

o2 angle that determines the direction in which light is travelling, Fig. 11.

When the V, speed equals the V,, speed of the Earth’s center with respect to the aether, the
equation (S.39) takes the following form:

(S.40) C(cto2) = Co [yf1-(Vye /Co)?sin? g, — (Ve /Cy) COSry , ]

According to existing experimental data [1] the light speed C in vacuum, measured on the
Earth takes the value: C=(299792458 +1.2) m/s , hence

(299792458 —1.2) m/s = C =< (299792458+1.2) m/s

In nearly all experiments concerning light speed measurements, the light travels in two
directions i.e. there and back. Therefore the light speed value obtained is the value for both
directions of the light movement.

It can be concluded from the equation (S.40) that the highest measured value of light speed
Cmax O0Ccurs when the velocity of light is perpendicular (o, = 90°%) to the Earth’s velocity

Ve and is the same in both directions ( V,o~Vy, (2.1) or V,.~Vp, (2.2) ). Hence it can be
concluded that the speed (299792458 +1.2) m/s means that the measurements of the light

speed were taken at the angles @, = * 90° and thereabouts. Thus the highest value of the

speed of light C,, in relation to the Earth and in terms of absolute time is:
A
(S.41) Crnax = C (@5= £90°) =Cq {1— (Vo /Cg)? =~ A—TZ (299792458 +1.2) m/s
71
From the relationship (3.49):

(S.42) ATy _ [1-(V,e /Co)?1H* :1—%(vze/co)2, as  V,/Cy << 1

1
From the equation (S.40) it can also be concluded that the lowest measured value of the light
speed Cp,;, occurs when the velocity of light is parallel to the velocity of the Earth \72e .
Hence it can be concluded that the speed (299792458 —1.2) m/s means that the
measurements of the light speed were taken at angles a,,=0, oy, = 180° and

thereabouts. Thus the lowest value of the light speed C,,;, in relation to the Earth and in
terms of absolute time is:

21 AT
(S.43) Cpin= =Cy[1- 1Cy)?] ~ —2 (299792458 —1.2) m/s
w0 TV r TG vy~ Gl Ve /Co)' ] = )
where: | distance travelled by light in one direction during the
measurement.

From the (S.41) equations, we obtain:

(S44)  Cp~ 272 (209792458 +1.2) —— 1 m/s

ATl \/1_ (Vze/CO)2

From the (S.43), (U.44) equations, we obtain:
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1— (Ve /Vp)®

Vl_ (Vze/CO)2
(S.45) (299792458 +1.2) /1— (V,. /Cy)?

(S.46)  (299792458+1.2)[1— % (V,e 1Cy)?1

(299792 458 +1.2) ~ (299792458 —1.2) , thus

Q

(299792458 —1.2) , hence

Q

(299792458 —1.2) , as V, /Cy<<1

After transformation of the above, the following is obtained:

2-2.4
V,e ICy ~ = 1.265-10"* ,  hence
299792 458 + 1.2

(S.47) V,e/Cy =~ 1.265-107*

The quotient (S.47) defines the speed V,, of the Earth’s center with respect to the aether,
expressed in terms of the light speed C, and takes values, determined with the use of

Albert Michelson’s interferometer, ranging (1.126): 10°* <V, /C, < 2-107*

Having considered the relationship (S.42) and V,, /Cy << 1, the equation (S.44) takes the
following form: Co~[1- % (V,e /C)?1(299792458+1.2) [1 + % (V,e /C)%] m/s

Then after considering the relationship (S.47) we obtain:

Co~[1- % (1.265-107%)?1 (299792458 +1.2) [1 + % (1.265-107%)%]1 m/s = 299792 460.4 m/s

Hence the speed of light C, in vacuum and with respect to the aether, expressed in terms of

absolute time, is:
(S.48) Co =~ 299792460.4 m/s

A unit of measurement — a meter — used herein, corresponds to the definition of a meter that
was in operations up to 1983 and was based upon the light wavelength measured with the use
of Albert Michelson’s interferometer.

SV VALUES OF THE SHIFTS OF INTERFERENCE FRINGES

When calculating values of the shifts of interference fringes with Albert Michelson’s
interferometer (Tables 1 — 7) a constant value of the light wavelength emitted by the light

source was adopted Ag= 5.9.107'm . This source is placed inside the interferometer and
has the absolute speed V, of the interferometer.
Let us write the following equations:

A m m
(S.49) N A TN
Aoy om My; Moz

where: Ay light wavelength, at the source of light absolute speed V,=0 - system 1,

Aoy light wavelength, at the source of light absolute speed V, - system 2,
wp, @y frequencies of vibration of the source of light atoms in systems 1 and 2,
My, Mg,  rest masses of the source of light atoms in systems 1 and 2.

Mo1= Mgy y1-(Vo/Cy)? relationship (3.27a).

Systems 1 and 2 are presented in Fig. 10.
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From the equations (S.49) we obtain:
Aot
[1- (Vo /Co)?1"*
Hence, the relative difference of the distances travelled by the light rays in the

interferometer is described by the following relationship:
Al Al

(S.50) Aop =

(S.51) = [1- (Vo /Cy) 2T

02 ‘o
According to relationship (1.109a): Al/4, = R,,, therefore the following is obtained:
(S.52) f—|= R, [1= (Vo /Co)?1Y*

02
According to relationship (1.113) the interference fringes shift value: k (®,,V,)= Ry, — Ry-

Having considered (S.52) the equation (1.113) takes the following form:
(558) k((D21vw) = (RWZ _ RV\LL) [1_ (VO/CO)2]1/4

(S.54) K(®,,V,) = (Ry — Ry) [1- %(VOICO)Z], when V,/C, <<1 .

The equation (1.117) which defines the value of k depending on distance increment Al, takes
the form as follows:
(5.55) K(®y, Vs Alp) = (Ryzaiz = Ruz) [1- (Vo /Co)?1H*

(S.56) K(®,, Vi, Aly) = (Rypaiz = Ruz) [1—%(v0/co)2], when V,/C, <<1

The values of the interference fringes shifts in Tables 2, 3, 4, 5 (without the last item) and in
Tables 6, 7, are subject to very small changes, as the expressions: [1-(V, /C0)2]1/4 ,

1—%(\/0 /Cy)? feature values very close to 1 for given values of V,, =V, /C, that are

presented in these tables.

Different values of the shifts of interference fringes at V,, = 0,1:
k(®,.V,) = (R — Ryg) [1- (0.1)21%* ~ (R,, — Ryy) 0.99749

While determining the values of the interference fringes shifts in the interferometer, the
relationship between the light wavelength (S.50) of the source and its absolute speed V,

should be considered.

S.VI UNITS OF MEASUREMENT

Since 1983 the following definition of a unit of length has been in operation:

The meter is the length of the path travelled by light in vacuum during a time interval of
1/299 792 458 of a second. This study indicates that the speed of light is constant in the
absolute (preferred) system only. In vacuum the speed of light in the inertial system depends
on the absolute speed of the system and a direction towards which light is travelling. Times
measured by atomic clocks depend on the absolute speed of the clocks.

Hence the length determined in laboratory experiments following the above mentioned
definition varies as it depends on the Earth’s speed on its orbit and its circumvolution.
Consequently derivative units expressed in terms of meters and seconds cannot be constant.

Due to the above, the units of measurement should be defined for the preferred system.
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S.VII THE MOTION OF MERCURY PERIHELION

In 1859 a French astronomer Urbain Le Verrier noticed that the motion of the Mercury
perihelion differs from its theoretical assessments. Exploiting Newton’s celestial mechanics
he calculated the contributions of each individual planet to the rotation of the Mercury elliptic
orbit. The sum of the perturbation effect of all external planets amounted to about 526".7
within a period of one hundred years, which means about 0 .267 per annum. He analyzed the

records of astronomical observations since 1697. That enabled a very precise assessment of
Mercury’s locations and made the calculation of the value of the observed perihelion motion
possible. The value was equal to 565" within a period of one hundred years. There was a

discrepancy between the observed and the calculated values of the perihelion movement of
about 38".3 within a period of one hundred years, which means about 0.383 per annum. This

additional shift of 0.383 in Mercury’s motion on its orbit can be explained by the elongation
of a terrestrial day.
If the angular speed of the Earth’s revolution was constant, the observed annual motion of

the Mercury perihelion would be equal to 5.267 as a result of the planets’ perturbation.
However due to the elongation of a terrestrial day by At, per year, the observer saw

Mercury shifted in its direction of orbital motion by an additional angle of 0.383 that is

a true anomaly: v = 0 .383 = 0°.000106388 . We apply a function t(v) that defines the time

after which Mercury takes a position on its elliptic trajectory determined by the angle v
(true anomaly). The function t(v) is defined by the relationship (2.13), Fig. 6.

evl-e? T,g( 2 arctg Vi-e’ig(v/2)  sinv
2 e~1_e? l+e 1+e cosv

t(v) = (2.13),

where:
T,y =87 23"15™ 44° =7600544s (Mercury’s stellar year),

e=0.20563069 (eccentricity of Mercury's orbit).

With the angle v = 00.000106388, the annual elongation of a terrestrial day At, in the period
from 1697 to 1859 can be calculated from the relationship (2.13):

At,=t(v = 0°.000106388 ) ~1.448 s .
Very precise observations of the Earth’s rotary motion started in the second half of the 20th
century after atomic clocks began to be used and the elongation of a terrestrial day had been

evidenced. From 1972 to 2012 i.e. over the course of 40 years, a day length has extended by
25 s. Thus the annual average elongation of a terrestrial day in that period of time is:

25s/40 = 0.625s. Apparent annual elongation of a terrestrial day with respect to the time
measured by atomic clocks is about 0.365s (see Table 13). Then the real annual elongation
of a terrestrial day At, from 1972 to 2012 is: At,=0.625s — 0.365s = 0.26 s.

From the above it is evident that the value of a terrestrial day elongation is diminishing:

At, < At,. This process will stop after the melt down of the glaciers (S.9). Then the small
oscillating and seasonal changes of the terrestrial day will occur. The advent of the next ice
age will see a considerable increase in the speed of the Earth’s rotary motion due to a rapid
decrease of the Earth’s moment of inertia.

The Moon and the Sun exert impact on the Earth’s motion. As a result the energy of its rotary
motion wears away, which causes the elongation of a terrestrial day by about 1.8 ms per

century [9].

98



S.VIII  PLANCK CONSTANT?

In quantum physics the frequency v of the hydrogen atom spectrum lines takes the following

form:
4

(S.57) yo_me R ), where:
8ssh® j2 K
i,k integers describing a lower and higher steady state respectively,
m mass of an electron,
e electric charge of an electron,
& permeability of vacuum,

h Planck constant (h=6.626176-10"%* Js).

Let us consider a motion of a hydrogen atom in a preferred system i.e. absolute.
When the atom moves at the absolute speed V,, the electron mass is:

(S5.58) m=my, =My 7 relationship (3.27), where:
my;  electron rest mass in the preferred system,
1

yo Lt
V1-(Vo /Co)?

C, speed of light with respect to the preferred

(S.58a) relationship (3.2),

system i.e with respect to the aether.
According to quantum physics the electron’s angular momentum is linked with Planck constant
h. Then the presence of electron’s mass in the angular momentum, as described by formula
(S.58a), prompts the application of the Hp factor in the equation (S.57) instead of constant h:

(8.59) H,=hy» , where:
hoy a constant defined by (x),
7 expression (S.58a).

Max Planck determined the h value by analysing the spectrum of the perfect black—-body
radiation, exploiting the observation results of this body on the Earth. The Earth has a minute

absolute speed V, ~1.244.107% C, (S.1), thus the value of the hy; constant at the absolute

speed V, =0 can be calculated with Planck constant h that was determined on the Earth.

h=ho (1/{1- (1.244107)? ) .  therefore
(*) hyy ~ h = 6.626176-10"** Js.

The absolute speed of the Centre of our Galaxy Vog is small Vog = 10’3CO (1.131), hence

the H, factor for the entire Galaxy is defined by the following equation:

Hy ~ ho (1/y1-(107°)? ) = hgy (1+ % 107®) | thus it can be assumed that:

Q

H, ~hy ~ 6.626176-10"*Js
The equation (S.57) for the atom absolute speed V,, now takes the following form:
4
My, €
(S.60) yy—_e€ 1 1

T8aZH: K2
Having considered equations (S.58), (S.59) we obtain:

4 4

m e 1 1 My, €
(S.61) Vi :ZOLS 2oty fuf
8¢y (ho?)” ] k 85 hyy r
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At the atom’s absolute speed V, =0, the frequency of emitted light is described by the

equation:
4
m,, e 1 1
(5.62) Vo = —2— (= - =), because =1
MTgeZhd K2 g
Using equations (S.61) and (S.62) we obtain:
Vi = vou — = vou[1- (Vo /C)?] . hence
7
(S.63) v = vou [1- (Vy /Cp)?]

Therefore the frequency of the hydrogen atom spectrum lines v, depends on the atom’s
absolute speed V, .
When the atom make a transition from the E, energy level to the Ej level of lower energy,

it emits energy:
1 1 Ee—
E=E-Ej=Hy vy =Nyt 7 vou —5 = No1 vou ;=ho1 vou v1— (Vo /Co)”
Y
therefore

(S.64) E=hy von y1- (Vo /Co)2 . where: vy,  relationship (S.62).

Vo > C, = E—>DO
The relationship (S.64) also implies that the atom emits the highest amount of energy
(a quantum of energy) while motionless (V, = 0) with respect to the absolute system i.e. with
respect to the aether.
The distance r between the nucleus and the electron on its elementary state of lowest
energy level:

h2
(S.65) r= 80_2
Tme
Considering (S.58) and (S.59) the following is obtained:
2
(S.66) po fotoy)® | ol £o hoy

2 2
7T Moy € 7T Moy € 7 Mgy 21— (Vo /Cp)?

At the hydrogen atom absolute speed V,
€o hgl -10
(S.67) rg=———>5 ~0.529-107°m
From (S.66) and (S.67) results the following relationship:

lo

AT

Therefore it can be concluded that for atoms there exists such an absolute speed V, above

(S.68) r= Vo >Cy = r —» ©

which no chemical bond can occur. Hence in galaxies speeding across the Universe with the
absolute speeds exceeding the speed of our Galaxy, living organisms cannot exist.

DOPPLER’S EFFECT
Two cases of motion of the source of light ZS in a preferred (absolute) system OXyYyZ,,

Fig.Sc1, will be examined and the absolute speed of each motion will be specified.
The Observer is located in the origin of the coordinate system OXyYyZ,.

According to Doppler’s effect, the spectrum lines frequencies of an atom that moves at an
absolute speed V,, which can be observed by the motionless Observer in the preferred

system are:
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C, 1

(S.69) Ve = Vy ——— =v, ——— ,  where:
A G VA "1y, IC,
Vobs observed frequency of spectrum lines,
Vi frequency of spectrum lines of a moving atom (relationship (S.63)),
A ZO
| %

(€3]

# - - " >
Vob Voa Xo
Fig. Scl1 Preferred (absolute) system, motionless with respect to the aether.

Symbols: ZS source of light (hydrogen atoms).
Absolute velocities: \70a =[ Vpa 0, 0 ],
Vopb=[- Vo, » O, 01,
Absolute speed V, is a module of V,, velocity.

Absolute speed Vg, is a module of V, velocity.

a) The source of light ZS is moving away from the observer along OX, axis at Vp,

velocity.
The equations (S.63), (S.69) take the following form:

(S.70) vy = vou [1— (Voa/Cp)?]
1
1+ Vg, /ICy
From the equations (S.70), (S.71) we have:
1= (Voa/Co)?
1+ Vg, /Cy

(S.71) Vobs = VH

(572) VObS = VOH = VOH (1 —Voa /Co)

The lengths of spectrum lines are:
(573) //i’ObS = CO /VObS 5 A’OH = CO /VOH
Where: A4, the observed length of the spectrum lines,

Aon  the length of spectrum lines when atom’s absolute speed V, =0.

The relative shift of the spectrum lines lengths:

lobs_ AOH . . . . ..
Z,= — After considering relationship (S.73) we obtain:
OH
C C 14
Z,=(=% — 20y DM gs oz, =20 g
Vobs VoH C0 Vobs
Then considering (S.72) we have: Z, = - 1 . Hence ultimately the speed Vg, :
Z
(S.74) Vga=Cy —2— , where: Z,> 0, Fig. Sc2
Z,+1

a
Za —> © = V,,— C,
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b) The source of light ZS is moving towards the observer along OX, axis at Vg,

velocity.
Equations (S.63) and (S.69) now take the following form:
(S.75) vy = vou [1- (Vop /Co)?]
(8.76) Vops = VH 1

1 - Vg /Cy
From equations (S.75) and (S.76) we have:
1= (Vop /Cp)?

(S.77) Ve = Voy ————— =V 1+V,,/C
obs OH 1_ VOb/CO OH ( 0b 0)
The relative shift of the spectrum lines lengths:
ﬂ'obs_ ﬂ'OH . . . ..
Z, = — After considering equations (S.73) we obtain:
OH
C C v
Z,=(—% - %) AL thus szvo—H—l
Vobs VoH Co Vobs
Having considered (S.77) we have:
1 .
Zy = —— — 1 . Hence ultimately the speed V,,,
b TV, /C, y the speed Yop
-Z
(S.78) Vo, = Cq b where: —05< Z, <0, Fig. Sc2
Zy+1

Z, > -05 =V, »>C,

The speed of the Earth with respect to the aether i.e. with respect to the preferred (absolute)
system is very small (appx. 1.244-10_4C0) , therefore the specified absolute speeds (S.74)
and (S.78) of the light source ZS apply also to the observer that is located on the Earth.

Vob A Voa

l
|
i
l
|
|
|
n
|
[
|
|
|
|
|
|
|
|

Za
=5 0 1 B 3 4 5 ’Zb

Fig. Sc2 Absolute speeds Vg, , Vp, of the light sources ZS (hydrogen atoms).

The relative shifts Z, , Z, of the lengths of the atom’s spectrum lines.

Voa Oza"'l, Z, 2 0, Z, > © = Vy, »> C,.
Zy,
p+1
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Absolute speeds V,,, Vy, of atoms in distant galaxies, can take values close to the speed of
light C, .
The observed length A, of the spectrum lines for hydrogen atoms is expressed by the

following relationship (S.73):
Aops = Co /Veps - After considering (S.72) we obtain:

Co _ Ao . thus Aobs _ 1
vor (1=Voa /Co) 1-V0a /Gy Ao 1=Voa /Cq

where gy = Cy/voy s the length of the spectrum lines of motionless atoms (Vo= 0)

/Iobs =

’

with respect to the absolute system, relationship (S.73).
thus Voa > Co = Ao/ Ay = ©.

Example: If V,/Cy;=0.98, then A,/ Agy =50
Therefore there is such an absolute speed V,, of atoms that are moving away from the

observer, above which the atoms’ spectrum lines cannot be observed or their observation, at
present, is impossible if only due to technical reasons. These atoms constitute invisible (dark)
matter.

Having considered the relationship (S.77 ) we have:

Co _ Co _ ﬂ’OH
Vops  Von (1 + Vop /Co) 14V, ICy

Aom
Voob > Co = Ags — 2—

. thus

ﬂobs =

Therefore the spectrum lines of the atoms moving towards the observer are visible at every
absolute speed Vg, .

S.IX THE AETHER

In this work no definition of the aether is provided. However, the existence of a static medium
that fills up the entire 3D cosmic space was assumed together with its name ‘the aether’
adopted due to historical reasons.

The authors do not presume the medium is identical to the aether defined by the 19" century
physicists. To define the aether, broad research is required.

A frame of reference that is motionless in relation to this medium has been assumed.
Consequently, the presence of the frame of reference has been evidenced and therefore the
aether’s very existence proven. This is the preferred inertial and absolute frame of reference
in relation to which absolute velocities and speeds are determined. The speed of light in a
vacuum, in relation to the absolute frame of reference (i.e. in relation to the aether) equals

‘ Co ‘“ and is the same in all directions.

Vacuum is space filled with the aether and devoid of material particles . Therefore

‘ nothingness’ does not exist as the omnipresent aether constitutes unity with the space.
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S.X  THE PURPOSE-BUILT INTERFEROMETER TO SHOW EARTH’S MOTION
WITH RESPECT TO THE AETHER

The interferometer shown in Fig.Sd1. allows us to evidence the Earth’s motion in relation to
the preferred coordinate system i.e. the aether.

9% o<
Kz
Az
‘ €z A} J0% (20X 2+ o)
- Z/ "

Lz
I
AN
‘g
%
5

Fig.Sd1 Diagram of interferometer and the trajectory of light in the interferometer.

SYMBOLS: ZS source of light, So slit,
Z mirror, M screen,
PP semi-transparent plate,
ALA LA points successively reached by a ray of light after leaving the
slit S, at the angle «,
B,, B, ,B; points successively reached by a ray of light after leaving the
slit S, at the angle g,
A, (e,, Ly) mirror Z half-length point

Following values were used in calculations:

L=L;+1.2 m, L,=0.8 m, L;=0.14m, e,=0.15m,
g= 1.25-103m thickness of PP plate,
a, = 259 inclination of the mirror Z to the arm L,

Ao = 5.9-100' m the wavelength of light in a vacuum,
n, =152 the PP plate refractive index with respect to

a vacuum.
The calculations of the interference fringe shifts values were performed with the use of
computer software abln (Chapter IV).

The length of segments a;,b;,b,,b; and the coordinates of points A, B;, B,, B; (Fig.Sd2)
were determined via the mathematical model of Michelson’s interferometer (Chapter I).

Now we are going to determine the length of segments a,, a; and the coordinates of points
Ay, A;.
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THE MOTION OF INTERFERONETER IN THE OXY COORDINATE SYSTEM:

90X
AY
' Q Xz
Az
A2 90°~(20C,+ )
Yo z “ % Ko Q M
Z T
2 A
o 7aty 7 . B,
B - By 62 3
) Sg 0 o& R
Bz

Fig.Sd2 The trajectory of light rays reaching points A;, B; on screen M after leaving
the slit S, at the angles «, .

The line equation of the mirror Z :

(8.79) y =tga, X +L,+tVysin®—tga, (e,+tV,cosd)
The equation of the y, straight line which passes through the point Aj (Xy, Ya1) IS¢
(S.80) y,=19(90° —a) x +y,—1g(90° —a) xy

Lines (S.79), (S.80) pass through the point A, (X, , Yap), therefore after considering
t=(y+a,)/Cy and V,/Cy=V,,, the following is obtained:

(S.81) Yar =10, X4 +L,+ (3, +a,)V,, sin®-tgea, [e,+ (a;+a,)V, cosd]
(S.82) Yar = 19(90°— @) Xy, + ya— t9(90°— ) x4y

The following relationship applies:

(S.83) Xap = Xg1 + @, SN

From the equations (S.81), (S.82), (S.83) the length of the a, segment can be calculated:
(S.84) a, = Ya— Lo — a%VW sin® +tga, (e, - )fal +a, V, cosd)  thus
tga, (sina -V, cos®) +V,sin® — cosa

the X,, coordinate of the point A, can be obtained from equation (S.83).

and the y,, coordinate of the point A, can be obtained from equation (S.82):
(5.85) Yaz = g (Xa2 — Xa1) + Yar

The equation of the yj; straight line which passes through the point A, (Xz5, Ya2) is:

(S.86) ya= — tg[90° - 2 a,+ )] X + Y. +19[90° - (2a, +a)] Xy
The line equation of the screen M :
(S.87) X= L +tV, cosd

Lines (S.86), (S.87) pass through the point Ag(X.3, Ya3), therefore after considering
t=(ay+a,+az)/Cy and V,/C,=V,, the following is obtained:

(S.88) Yaz= —Clg(2 @, + @) Xu3 + Yar + CtO(2a, + @) Xg

(S.89) Xe3= Ly + (3, + @, +a3) V,, cos®
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The following relationship applies:

(S.90) Va3 = Ya» — 83 SiN[90° — (2, + )]
From the equations (S.88), (S.89), (S.90) the length of the a; segment can be calculated:
g2 a,+ @) [X;o—Li— (a,+ay)V, cosd]

, thus
ctg(2a,+ ) V,, cosd — cos(2a, + a)

(U.91) a =

the X,3 coordinate of the point A; is obtained from the equation (S.89).
the y,s coordinate of the point A; is obtained from the equation (S.90):
(S.92) Ya3= Yaz — 83 C0s(2 ¢, + @)

THE O’EQ COORDINATE SYSTEM:

AY G Xz
L.z_‘— ———————

Az1qas

4 —
o Vo } i B219b3

-
XV

Fig.Sd3 The points A, B; of the screen M, together with their coordinates Q,3, Qp3, Which
were reached by the rays of light after leaving the slit So at the angles «, .

The coordinates of points A, A,, Ay are defined by equations (1.79),...,(1.84).
The coordinates of points B;, B,, B; are defined by equations (1.89),...,(1.94).

The total relative difference of distances travelled by the rays of light:

(S.93) Ry = (ay, + ay, +ag, — by, — nyby, — by, )/ 4y, where:
ay,, , ., 83, relationships (1.99), (1.100), (1.101),
by, by, by, relationships (1.104), (1.105), (1.106).

The shift of the interference fringes is calculated with respect to point Mo with its coordinate
g, on the screen M.

In the calculations — the relative approximations of points Ag, B; to point M, are described
by the following inequalities of coordinates (Fig.Sd3):

|Qa3—%|//10<10_7y | dbs— o |//10<10_7
The value of gy = 0.0314m was adopted for calculations.
The formula (1.113) can be applied to calculate the values of interference fringe shifts with
respect to any Mo point on the screen M, after rotating the interferometer by any angle CD2

and with the VW :V0 /Co fixed at any value.
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(221
D, B Rus Interferometer
- - Pig.Sd1
ra ra _
7.9272859700 -10 2
0 5 3762006417 . 102 1714978 . 275369
a,
q)z ﬂz sz k= RWZ - Rwl
rad rad _ B
7.9293210486 -10~2
714 | 5 3840056517 -1072 1714978 .273784 —1.585.10°°
7.9251864917 -10~2
712 1 53879467438 10 2 1714978.278831 3.462-10°3
7.9202736003 -10~2
— 714 3664940160 1072 1714978.280410 5.041.1073
7.9123925013 -10~2
—712 5 3630542726 102 1714978.278820 3.451.10°3

TABLE 1S Values of the interference fringe shifts obtained in the interferometer-Fig.Sd1

at Earth’s relative speed V,, = 1.244.107%.

a,
@, B Ru1 Michelson’s
interferometer
rad rad _ Fig.1
4.0632221297 -10 3
0 3.6009713906 - 103 3002.1315414
22)
ch ,32 sz k= sz - Rwl
rad rad _ B
4.0334363765 -107°
7l4 | 36838569584 102 3002.1311184 — 4.23.107
3.9520933235 103
7l2 | 37151890224 10 2 3002.1314894 ~5.20-10°5
4.0240046661 -1073
~ 7141 35150847874 1073 3002.1318969 3.55.10
3.9387581529 1072
~712 | 5 yoe0ee075 100 3002.1314913 _501.10°°

TABLE 2S Values of interference fringe shifts obtained in Michelson’s interferometer
(Fig.1) at Earth’s relative speed V,,= 1.244.107%.
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Values of the interference fringe shifts obtained in the interferometer in Fig.Sd1 are greater
than the values obtained in the Michelson’s interferometer.
5.041.102/ | —4.23-10* | 12 (see Tables 1S, 2S).

CARRYING OUT THE MEASUREMENTS:
The supporting structure of the interferometer should enable the interferometer to be set up

in relation to its absolute velocity V, (Fig.Sd4).

p

Ph

T

Ly

QZ |

Su

Fig.Sd4 Positioning the interferometer in relation to velocity \70 .

Schematic diagram

SYMBOLS:
L, L arms of the interferometer,
Ip vertical line,
ph plane of the horizon (its projection),
N, S, North-South line
Vv, absolute velocity Vy, (2.1) of the interferometer or absolute velocity Vo, (2.2),
A, azimuth Ay, (2.62) of Vy, velocity within angle range from 0° to 360°, or

azimuth Ay, (2.69) of Vy, velocity within the same range of angles,
Hy altitude Hgy, (2.60) of Vy, velocity within angle ranges from 0° to 180° and
rom 0° to —180°, or altitude Hy, (2.67) of velocity \702 within the same

ranges of angles,
D, angle between V, velocity and the interferometer’s arm L, within angle

ranges from 0° t0180° and from 0° to —180°.
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To calculate the values of A,, H, angles, the computer software VolVo2 (Chapter IV) can be
used. It allows the values of Ay, Hy angles to be calculated for any given point on the Globe
and for any given time UT (see the example on page 46).

Due to the Earth’s simultaneous rotary and orbital motions, the Ay, H, angles are subject to

constant change. Consequently, having calculated the values of those angles and having set
up the interferometer at those angles with respect to the N, S, line and the ph plane, the

change of the ®, angle and the observation of the interference fringe shifts k are
restricted to just a few minute’s time period.

SEMI-TRANSPARENT PLATE THICKNESS g AND INTERFERENCE FRINGE SHIFTS k
IN THE INTERFEROMETER:

rad m —
0.2:10°% 5.032-107°
Interferometer S ”
Fig.Sd1 ) 5-10 5.043-10
1072 5.051.107°
2.1072 5.072-107°

TABLE 3S The interference fringe shifts values k for different g thickness values of the
semi-transparent plate PP at V,, = 1.244-107%.

Thickness g of semi—transparent plate PP only slightly influences the values k of
interference fringe shifts (see Table 3S).
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INDEX OF SYMBOLS

Co

(=2
o o

The velocity of the light in a vacuum with respect to the aether,
the speed of light in a vacuum with respect to the aether,

the speed of light in a vacuum with respect to the system 2 (O'EQW),
the speed of light in the semi—transparent plate PP with respect to the

aether,

the absolute velocity of the interferometer and the system 2 (O’'EQW),
the absolute speed of the interferometer and the system 2 (O’EQW),
the absolute speed of the interferometer, expressed with respect to
the speed of light C,,

the wavelength of light in a vacuum,

the wavelength of light in the semi-transparent plate PP,

the refractive index for the semi-transparent plate PP with respect to
a vacuum,

angles at which rays of light leave slit S0 ,

angles of the light rays refraction in a semi—transparent plate,

angle between the OXo and the OX axes and also the angle at which the
interferometer is situated with respect to its absolute velocity \70,

time intervals in which a ray of light reaches successively points Al,...,A

after leaving slit SO,

time intervals in which a ray of light reaches successively points B1""’Bs

after leaving slit SO,

distances between contiguous points So, A1""’A5 in the OXY system,
distances between contiguous points So B1""’Bs in the OXY system,
distances between contiguous points So, A1""’A5 in the O’EQ system,
distances between contiguous points So Bl,...,B5 in the O’'EQ system,
the coordinate of point A5 of the screen M reached by a ray of light after
leaving slit SO at angle «,

the coordinate of point 85 of the screen M reached by a ray of light

after leaving slit S0 at angle g,

a point on the screen M (a fixed line in the telescope) in relation to
which the shift of interference fringes is calculated,
the coordinate of the Mo point on the screen M in the O'EQ system.

the relative difference of distances traveled by the rays of light reaching

one point of screen M in the O’EQ system,
the value of interference fringes shift,
the relative difference of distances traveled by the rays of light reaching

distant points A5, 85 of screen M in the O’'EQ system,
the difference of relative differences of distances RrW ,

the peripheral velocity of a point i.e. a place on the Earth’s surface

where the interferometer (the observer) is located .
the peripheral speed of a point i.e. a place on the Earth’s surface

where the interferometer (the observer) is located .
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se

sel

o
zs

GHA

s

GHA,
GHAaries
LHA

S

LHA

se

LHA

sel

o

zs

se

the velocity at which the Earth’s center travels around the Sun,

the speed at which the Earth’s center travels around the Sun.

the velocity at which the Earth's center travels with respect to the aether,
the speed at which the Earth’s center travels with respect to the aether,

the velocity at which the Sun’s center travels with respect to the aether,

the speed at which the Sun’s center travels with respect to the aether,
the velocity at which the Sun’s center travels around the center of our Galaxy,

the speed at which the Sun’s center travels around the center of our Galaxy,

the velocity at which the center of our Galaxy moves with respect to the

aether,
the speed at which the center of our Galaxy moves with respect to the aether,

Northern point of the horizon,
Southern point of the horizon,
The North Pole,

The South Pole,
the line of intersection between the horizon plane and the celestial meridian

plane which run through the point U (¢, 1),

the angular speed of the Earth’s rotation,
inclination of the ecliptic to the celestial equator,
annual precession within ecliptic (in longitude),
true anomaly,

a radius vector,

an average Earth-Sun distance,

a small semi—axis of the Earth’s orbit,

stellar year,

tropical year,
the duration of astronomical winter,

the absolute velocities of the interferometer in the horizontal system.

V =V or V =V ,
0 01 0 02

right ascension of the Sun,

right ascension of the Vse velocity,
right ascension of the \7561 = —\7Se velocity,
right ascension of the \725 velocity,

Greenwich Hour Angle of velocity \7ZS ,

Greenwich Hour Angle of the Sun
Greenwich Hour Angle of the Aries point,
Local Hour Angle of velocity \7ZS ,

Local Hour Angle of velocity Vse,

Local Hour Angle of velocity VSel =—Vse,

declination of velocity VZS ,

declination of velocity VSe ,
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Ora’  Orb

Op

ATZra,AT

Arzp

2rb

R pa(T/2)

Rba(T 12)

syn

declination of velocity V.. =-V
sel se

altitude of velocity \725,
altitude of velocity \756,

altitude of velocity V.. =-V
sel se

altitude of velocity V01’
altitude of velocity \702,
azimuth of velocity \7ZS ,

azimuth of velocity \7Se ,

azimuth of velocity V.. =-V |
sel se

azimuth of velocity Vo1’

azimuth of velocity Voz’

point U of geographical coordinates ¢, 4 in which the interferometer
(the observer) is situated,
rest mass of particle in systems 1 and 2 respectively (Fig.10),

mass of a particle in motion in systems 1 and 2,

forces acting on a particle in systems 1 and 2,

particle’s velocity in systems 1 and 2,

average life time of unstable particles in system 1 and 2,
frequency of atom vibrations in systems 1 and 2,

angular speed of the Earth’s rotation in systems 1 and 2,
Earth’s moment of inertia in systems 1 and 2,

times measured by atomic clocks in systems 1 and 2,
Earth’s sidereal days in systems 1 and 2,

time measured by the atomic clock in system 2 at Arl =T1,
difference of the times T2 _ATZ(Tl)’
atomic clocks situated along an Earth’s parallel,

an atomic clock situated at the South Pole,
the speeds of the ZAa,ZAb clocks situated on the parallel’s plane,

the absolute speeds of the ZA,,ZA; clocks,

the absolute speed of the ZAp clock,

times measured by the ZA, ZA, clocks situated on the Earth’s parallel,
time measured by the ZAp clock situated at the South Pole,

the absolute value of the difference in times measured by
the ZA, ZA, clocks during half-a-sidereal day since the time of their

synchronization.
the absolute value of the difference in times measured by

the ZAa,Z/-\) clocks during half-a-sidereal day since the time of their

synchronization,
the UT of the clocks synchronization time.
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