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PREFACE 
 

In the 19th century physicists were convinced that there exists a medium, called the aether )1(

, with respect to which light and all objects are in motion. James Clerk Maxwell believed that 

with the use of light, it is possible to determine Earth’s speed in relation to the aether. Under 

the Galilean transformation his equations link the speed of light (c) in the inertial frame of 

reference with the frame’s velocity with respect to the aether.  

 

Having become familiar with J. C. Maxwell’s deliberations, Albert A. Michelson came up with 

an idea for an experiment by which the Earth’s motion with respect to the aether could be 

measured with adequate precision and thereby the applicability of the Galilean transformation 

to the motion of light could be verified. With an interferometer of his own design he made 

calculations from which he obtained the relationship between ‘the shift of interference  

fringes’ and the interferometer speed with respect to the aether. After applying the relative 

speed of the interferometer against thhe aether as equal to the orbital speed of the Earth 

(approximately 30 km/s) he obtained a specific shift value of about 0.04 of a fringe, and he 

expected that the shift he was to observe during the experiment would be no smaller than the 

value he had calculated. However, in the experiment which he performed in 1881 – after J. C. 

Maxwell had already passed away – he observed no such shift. In 1887 Albert Michelson and 

Edward Morley jointly repeated the experiments using a more advanced interferometer with 

very much the same result as in 1881 i.e. no shift of interference fringes was observed. 

 

While Albert Michelson’s calculations raised no doubts among physicists though the fact that 

Michelson-Morley’s experiments failed to provide the observance of the shift of interference 

fringes was weakening their faith in the existence of the aether. Ultimately the aether concept 

was abandoned altogether. In 1905 the Galilean transformation was replaced by Hendrik A. 

Lorentz’s transformation after Albert Einstein’s presentation of the Special Relativity (SR) 

theory that was based on two key postulates. The first assumes that no preferred inertial 

frame of reference exists, which effectively means that the aether does not exist, and the 

second assumes that the speed of light in a vacuum is the same in all inertial frames of 

reference. The Galilean transformation holds when relative speeds of objects in inertial 

frames are negligibly small compared to the speed of light c.                         

 

In this work a mathematical model of Albert Michelson’s interferometer was designed 

assuming that the aether does exists and that the Galilean transformation is in operation. The 

authors have created this model to explain exactly why no shift of interference fringes was 

observed with the interferometer used in Michelson’s experiments.  

 

Based on the data from the Michelson’s experiments and the values of the interference fringe 

shifts resulting from the mathematical model which incorporated a variety of angles that the 

interferometer was positioned at and considered its different speeds against the aether, the 

speed of the interferometer on the Earth’s surface was determined with respect to the aether. 

Then given the interferometer speed on the Earth with respect to the aether and the speed at 

which the Sun revolves around the center of our Galaxy as well as having taken into 

consideration the aberration of starlight, the relative speeds of the Earth, the Sun and the 

Galaxy centers with respect to the aether were determined. 

 

  

 
)1(  In this work, the authors denoted ‘ the aether ‘ (in bold)  as defined by the 19th century physicists, and    

      ‘the aether’  as appears  throughout this work and is described on p. 103. 
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For experimental purposes such as investigating particles in linear accelerators, the 

coordinates of the absolute velocity of the interferometer, and therefore of any object on the 

Earth’s surface, in the horizontal frames of reference were determined. Then, according to 

Newton’s second law, the motion of a particle was investigated with its speed-related mass 

changes considered.                                                                 

 

Finally, the decay of unstable particles was researched and it was shown that the elongation 

of the Earth’s sidereal day with respect to the time measured by atomic clocks is merely 

apparent. The relationship between the time measured by atomic clocks  and the clocks’ 

speed with respect to the aether was determined. This was applied for calculating the Earth’s 

and the Sun’s speeds with respect to the aether with the use of atomic clocks. 

 

........................................................................................................................................................... 
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           CHAPTER  I   

    

          MATHEMATICAL MODEL  
                                                        

I.1        ALBERT MICHELSON’S INTERFEROMETER  
                                              
I.1.1        ASSUMPTIONS AND THE COORDINATE SYSTEMS  
 

 

Let us assume that a medium, called the aether exists. Light and the interferometer move 

with respect to the aether. In our considerations, in order to establish the motion of light and 

the interferometer with respect to this medium, we introduce three coordinate systems placed 

on one plane (Figs. 2, 3 & 4), namely:  

 

1) A preferred absolute inertial coordinate system OXoYo, motionless with respect to the 

aether (a frame of reference).  

 

      2)   An OXY coordinate system. 

            Its initial point always corresponds to the OXoYo initial point. The OXY coordinate  

            system can rotate by any    angle with respect  to the OXoYo system.  

 

2) An O’EQ coordinate system fixed to the interferometer. The interferometer’s velocity  

o
V


 is always parallel to the OXo axis. The O’E axis is always parallel to the OX axis. 

The system’s origin corresponds   to the origin of the OXoYo system only at the initial 

time t=0 of an interferometer motion under consideration. 

 

The O’EQ is an inertial system which moves togaether with the interferometer along the OXo 

axis at a constant velocity 
o

V


 in relation to the OXoYo system. Another inertial system will be 

obtained when the value of the 
o

V


 velocity modulus is changed and fixed. Thus, if we keep on 

applying this procedure, any number of O’EQ inertial systems can be obtained. The 
o

V


velocities are the absolute velocities of the O’EQ systems. The light is an electromagnetic 

wave that with respect to the aether travels in a vacuum with the 
o

C


 velocity which modulus 

(the absolute speed) 
o

C  = const.   
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Fig. 1  Diagram of  Albert Michelson’s interferometer and the trajectory of light rays in the   

          interferometer. 

 

SYMBOLS:  

                        ZS        source of light,   

                         
0

S       slit,  

                    
21

, ZZ        mirrors,      

                         PP       semi-transparent plate,  

                          M       screen,                 

                  
51

,...,AA       points successively reached by a ray of light after leaving the  

                                    slit 
0

S  at the angle  ,  

                  
51

,...,BB       points successively reached by a ray of light after leaving the  

                                    slit 
0

S  at the angle  ,  

                      
21

,       angles of the light rays refraction in the semi-transparent plate PP. 

 

BASIC DIMENSIONS:          

                   
1

L    ,   
2

L  ,   
3

L  ,   
4

L  ,  

                    g     thickness of the semi-transparent plate PP.                            

The values of basic dimensions and the wavelength of light in a vacuum, can be found on  

page 74. 

 

Herein two phenomena i.e. the  light diffraction on the slit 
0

S  and the interference of those 

rays which after leaving the slit 
0

S  at ,  angles reach one point on the screen M were 

exploited.  Points 
55

, BA  coincide.              
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Fig. 2  The trajectory of light rays reaching point 
5

A  on screen M after leaving the slit 
0

S  at   

           the angle  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  The trajectory of light rays reaching point 
5

B  on screen M after leaving the slit 
0

S  at   

           the angle  . 
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I.1.2      RAYS OF LIGHT IN  SEMI-TRANSPARENT PLATE   
                                         (Figs. 1, 2 & 3) 

 

 According to Snell’s law the following equations can be obtained: 

                           

                                
2

0

21
sin

)45sin(

sin

)45sin(
n

C

C

pp

o
oo


















    

    

Where:        
21

,       the angles of refraction of the light rays in the PP plate, 

                      
2

n        the index of refraction for the PP plate with respect to a vacuum, 

                      
o

C       the speed of light in a vacuum with respect to the aether, 

                      
p

C       the speed of light in the PP plate with respect to the aether, 

                      
o

        the wavelength of light in a vacuum, 

                      
p

       the wavelength of light in the PP plate.   

 

The following defines a vacuum: 

                        Vacuum is space filled with the aether and devoid of  material particles. 

This is an absolute vacuum.  In reality such a space or a given volume that is absolutely 

matter-free does not exist. 

 

From the above equations we have:    

(1.1)                         

2
1

)45sin(
arcsin

n

o 



  

(1.2)                          

2
2

)45sin(
arcsin

n

o 



  

(1.3)                          
2

/ nCC
op

  

(1.4)                          
2

/ n
op

   

 

 

 

 

 

I.1.3       LINE EQUATIONS IN THE OXY COORDINATE SYSTEM    
                                        (Figs. 1, 2, 3 & 4) 

 

The straight line equations of the trajectory of light rays: 

                                 
1

y ,     
2

y ,    
3

y ,    
4

y ,     
5

y  

                                 
12

y ,   
22

y ,    
32

y ,   
42

y ,   
52

y  

The line equation of the mirror 
1

Z : 

(1.5)                            cos
1 o

tVLx  

The
6

y  line equation of the mirror 
2

Z :                                    

(1.6)                            sin
26 o

tVLy  

The 
7

y  line equation of the screen M:  

(1.7)                            sin
47 o

tVLy  
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The 
8

y  line equation of the PP plate on the side of the 
0

S slit.  

The coordinates of the point ),(
000 aa

yxA  are: 

(1**)                  cos
30 oa

tVLx   

(2**)                  sin
0 oa

tVy  

The line 
8

y   passes  through point 
0

A     hence its equation takes the following form:   

                         008 4545 aa
oo yxtgxtgy                       

Having considered equations (1**) & (2**)  we obtain: 

(1.8)                  )sin(cos
38


o

tVLxy   

The 
9

y   line equation of the other side of the PP plate.  

                         gyy 289            therefore                                                                 

(1.9)                  )sin(cos239  otVgLxy  

 

In equations (1.5) - (1.9) the variable t  represents the motion absolute time of the  

interferometer. 

 

 

 

 

 

I.1.4    THE COORDINATES OF THE 
51

,..., AA  POINTS AND THE LENGTHS OF  

            THE 
51

,..., aa   SEGMENTS  IN THE OXY COORDINATE SYSTEM 

 

The lengths of segments of the distance traveled by a ray of light leaving the slit 
0

S  at the 

angle  :  

               
101

ASa  ,    
212

AAa  ,     
323

AAa  ,     
434

AAa  ,    
545

AAa  . 

 

 

 

 

1. POINT 
1

A   AND THE LENGTH OF THE 
1

a  SEGMENT         

The coordinates of point ),(
111 aa

yxA  are determined by straight line equations: 

               xtgy 1    ,     (1.8)  )sin(cos
38


o

tVLxy   ,   

o
a C

a
tt 1

1
      (1*)      so   

(1.10)       




sincos

cos
)]sin(cos[

131 


o

o

a C

V
aLx    

(1.11)       




sincos

sin
)]sin(cos[

131 


o

o

a C

V
aLy      

The coordinates of the 
10

AS  segment  are:   0[
110


a
xAS ,   ]0

1


a
y      

We can write an equation:       2

1

2

1

2

1 aa
yxa   

which after applying formulae  (1.10) and (1.11) takes the following form:   

(1.12)       

o

o

C

V

L
a

)sin(cossincos

3
1






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2.   POINT  
2

A     AND THE LENGTH OF THE 
2

a  SEGMENT  

The equation of the 
2

y  straight line which passes through the point 
1

A is: 

             112 )90()90( a
o

a
o xtgyxtgy       

The coordinates of ),(
222 aa

yxA point are determined by straight lines equations:                                              

              
2

y ,            (1.6)   sin
26 o

tVLy ,      

o
a C

aa
tt 21

2


      (2*)     thus 

(1.13)     ]sin)([
cos

sin

211212


o

o

aaa C

V
aayLxx




  

(1.14)       sin)(
2122

o

o

a C

V
aaLy  

The coordinates of the  
21

AA segment are:       
1221

[
aa

xxAA   ,   
12 aa

yy  ] 

               sin
cos

sin

22112
o

o

aaa C

V
axxx




 

               sin
22112

o

o

aaa C

V
ayyy                     where: 

(1.15)      )sin(
cos

sin

11221


o

o

aa C

V
ayLx




 

(1.16)      
11221

sin
a

o

o

a
y

C

V
aLy    

We can now write the following equation:   

               2

12

2

12

2

2
)()(

aaaa
yyxxa            which when solved, gives the following: 

 (1.17)      
22

2321

2
r

rr
a


                where: 

 (1.18)        sin
21

o

o

C

V
r (

2121 cos

sin

aa
yx 



 ),               (1.19)      1
22

r (
cos

sin 

o

o

C

V
)2

     

 (1.20)       )( 2

21

2

2122

2

2123 aa
yxrrr 

 
  

 

 

3.   POINT
3

A  AND THE LENGTH OF THE 
3

a   SEGMENT              

The equation of the straight line  
3

y  which passes through the point 
2

A is given by:       

                 223 )90()90( a
o

a
o xtgyxtgy                                                   

The coordinates of the ),(
333 aa

yxA  point are determined by the equations of straight lines:  

                
3

y ,     (1.8)  )sin(cos
38


o

tVLxy ,          

o
a C

aaa
tt 321

3


     (3*)  thus 

 (1.21)      2321233
cossin

cos
)]sin(cos)([

cossin

sin
a

o

o
aa x

C

V
aaayLx













    

 (1.22)      






3221233 cossin

cos
)]sin(cos)([

cossin

sin
Lx

C

V
aayLy

a
o

o

aa 






     

                   )sin(cos)(
21



o

o

C

V
aa    )sin(cos

cossin

cos

3



o

o

C

V
a




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 The coordinates of the  
32

AA  segment are:       
2332

[
aa

xxAA  ,      ]
23 aa

yy   

                 )sin(cos
cossin

sin

33123





o

o

aaa C

V
axxx




 

                 
3123 aaa

yyy     )sin(cos
cossin

cos

3



o

o

C

V
a




         where: 

(1.23)        
22212331 cossin

cos
)]sin(cos)([

cossin

sin

aa
o

o

aa
xx

C

V
aayLx 














    

                    

(1.24)       






32212331 cossin

cos
)]sin(cos)([

cossin

sin
Lx

C

V
aayLy

a
o

o

aa 






 

                        
221

)sin(cos)(
a

o

o y
C

V
aa   

                                                 2

23

2

23

2

3
)()(

aaaa
yyxxa       

Having solved the above equation, we obtain:  

(1.25)        
32

3331

3
r

rr
a


                           where:     

(1.26)       
31

r (  cossin
3131 aa

yx  ) 
o

o

C

V
 

 cossin

sincos




    

(1.27)       1
32

r (
o

o

C

V
 

 cossin

sincos



 )2 

(1.28)       )( 2

31

2

3132

2

3133 aa
yxrrr   

 

4. POINT 
4

A   AND THE LENGTH OF THE 
4

a  SEGMENT 

The equation of the 
4

y straight line which runs through the  
3

A  point is given by: 

                31314 )45()45( a
o

a
o xtgyxtgy     

 Through the plate, light travels with the speed  of  
2

/ nCC
op

       (1.3),  hence to travel the 

distance 
4

a  in the plate it requires the following time:   

op
C

an

C

a
424   

 The coordinates of the ),(
444 aa

yxA  point are determined by the equations of straight lines:  

        
4

y ,    (1.9)  )sin(cos239  otVgLxy ,    

0

42321

4 C

anaaa
tt
a


    (4*)    thus                   

(1.29)    



 )sin(cos)(2[

)45cos()45sin(

)45cos(
423213

11

1
4

o

o

oo

o

a
C

V
anaaagLx




 

                     ])45( 331 aa
o yxtg    

 

(1.30)    
4a

y    



)sin(cos)(2[

)45cos()45sin(

)45sin(
423213

11

1

o

o

oo

o

C

V
anaaagL




 

                       313331 )45(])45( a
o

aaa
o xtgyyxtg    

 

The coordinates of the 
43

AA  segment are:       
3443

[
aa

xxAA  ,      ]
34 aa

yy          with 
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                   )sin(cos
)45cos()45sin(

)45cos(

42

11

1

4134







o

o

oo

o

aaa C

V
anxxx




  

                   
4134 aaa

yyy    )sin(cos
)45cos()45sin(

)45sin(

42

11

1 




o

o

oo

o

C

V
an




     where: 

(1.31)          



 )sin(cos)(2[

)45cos()45sin(

)45cos(
3213

11

1
41

o

o

oo

o

a
C

V
aaagLx




 

                          3331 ])45( aaa
o xyxtg      

(1.32)          
41a

y    



)sin(cos)(2[

)45cos()45sin(

)45sin(
3213

11

1

o

o

oo

o

C

V
aaagL




    

                             31331 )45(])45( a
o

aa
o xtgyxtg          

                                             2

34

2

34

2

4
)()(

aaaa
yyxxa                                               

Having solved the above equation, we obtain: 

(1.33)           
42

4341

4
r

rr
a


                 where: 

(1.34)           

o

oo

a

o

a C

V
nyxr

214114141
)]45sin()45cos([    

)45cos()45sin(

sincos

11
 


oo

 

(1.35)           1
42

r (
o

o

C

V
n

2
 

)45cos()45sin(

sincos

11
 


oo

)2 

(1.35.1)         )( 2

41

2

4142

2

4143 aa
yxrrr   

 

 

5. POINT 
5

A   AND THE LENGTH OF THE 
5

a  SEGMENT        

The equation of the 
5

y  straight line which passes through the 
4

A point is given by: 

                     445 )90()90( a
o

a
o xtgyxtgy    

The coordinates of the   ),(
555 aa

yxA point are determined by the equations of straight lines: 

      
5

y ,          (1.7)    sin
47 o

tVLy ,        

o
a C

aanaaa
tt 542321

5


     (5*)      thus                                       

(1.36)           
4454232145

]sin)([
cos

sin

aa
o

o

a
xy

C

V
aanaaaLx 




   

(1.37)            sin)(
54232145

o

o

a C

V
aanaaaLy  

The coordinates of the 
54

AA  segment are:     
4554

[
aa

xxAA    ,   ]
45 aa

yy      with 

        

                    
5145 aaa

xxx      sin
cos

sin

5
o

o

C

V
a




 

                     sin
55145

o

o

aaa C

V
ayyy                where: 

(1.38)            ]sin)([
cos

sin

442321451 a
o

o

a
y

C

V
anaaaLx 




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(1.39)            
442321451

sin)(
a

o

o

a
y

C

V
anaaaLy   

                                  2

45

2

45

2

5
)()(

aaaa
yyxxa   

Having solved this equation we obtain: 

(1.40)            
52

5351

5
r

rr
a


                 where: 

(1.41)            
51

r (




cos

sin

5151 aa
xy  ) sin

o

o

C

V
,              (1.42)     1

52
r (

cos

sin 

o

o

C

V
)2

 , 

(1.43)            )( 2

51

2

5152

2

5153 aa
yxrrr   

 

I.1.5     THE COORDINATES OF THE 
51

,...,BB   POINTS AND THE LENGTHS OF  

             THE 
51

,...,bb   SEGMENTS IN THE OXY COORDINATE SYSTEM 

 

The lengths of distances traveled by the ray of light after leaving the 
0

S slit at the angle 

are: 

                    
101

BSb  ,       
212

BBb  ,       
323

BBb  ,       
434

BBb  ,       
545

BBb  . 

 

6. POINT 
1

B  AND THE LENGTH OF THE  
1

b  SEGMENT 

The coordinates of the ),(
111 bb

yxB  point are determined by the straight lines equations: 

       xtgy 12 ,         (1.8)    )sin(cos
38


o

tVLxy ,       

o
b C

b
tt 1

1
     (6*)      thus 

(1.44)            




sincos

cos
)]sin(cos[

131 


o

o

b C

V
bLx  

 (1.45)           




sincos

sin
)]sin(cos[

131 


o

o

b C

V
bLy  

 The coordinates of the 
10

BS segment are:       0[
110


b
xBS ,     ]0

1


b
y  

                     2

1

2

1

2

1 bb
yxb   .       

Having solved this equation we obtain: 

(1.46)            

o

o

C

V

L
b

)sin(cossincos

3

1







 

 

7. POINT 
2

B   AND THE LENGTH THE 
2

b  SEGMENT 

The equation of the 
22

y straight line which passes through the
1

B point is: 

  121222 )45()45( b
o

b
o xtgyxtgy    

Light travels the distance 
2

b  within a time interval   

op
C

bn

C

b
222   . 

The coordinates of the ),(
222 bb

yxB point are determined by the straight lines equations: 

       
22

y ,        (1.9)  )sin(cos239  otVgLxy ,          

o
b C

bnb
tt 221

2


     (7*)      thus 
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(1.47)         
2b

x 



)sin(cos)(2[

)45cos()45sin(

)45cos(
2213

2
0

2

2

o

o

o

o

C

V
bnbgL




1b

y + 

                         12 )45( b
o xtg  ] 

(1.48)        
2b

y   



)sin(cos)(2[

)45cos()45sin(

)45sin(
2213

2
0

2

2

o

o

o

o

C

V
bnbgL




1b

y + 

                         12 )45( b
o xtg  ]

1b
y 12 )45( b

o xtg   

The coordinates of the 
21

BB  segment are:         
1221

[
bb

xxBB   ,    ]
12 bb

yy   

                 )sin(cos
)45cos()45sin(

)45cos(

22

22

2

2112







o

o

oo

o

bbb C

V
bnxxx




 

 

                 
2112 bbb

yyy      )sin(cos
)45cos()45sin(

)45sin(

22

22

2 




o

o

oo

o

C

V
bn




       where: 

(1.49)         



 113

22

2
21 )sin(cos2[

)45cos()45sin(

)45cos(
b

o

o

oo

o

b y
C

V
bgLx




 

                       112 ])45( bb
o xxtg    

(1.50)         
21b

y    



113

22

2 )sin(cos2[
)45cos()45sin(

)45sin(
b

o

o

oo

o

y
C

V
bgL




 

                           1212 )45(])45( b
o

b
o xtgxtg    

 

                                              2

12

2

12

2

2
)()(

bbbb
yyxxb   

Having solved the above equation we obtain: 

(1.51)          
22

2321

2
s

ss
b


                      where: 

(1.52)          
o

oo
b

o
b

c

V
nyxs 222122121 )]45sin()45cos([    

)45cos()45sin(

sincos

22
 


oo

 

(1.53)          1
22

s (
o

o

C

V
n

2
 

)45cos()45sin(

sincos

22
 


oo

)2 

(1.54)          )( 2

21

2

2122

2

2123 bb
yxsss      

 

 

 

 

 

 

8. POINT 
3

B   AND THE LENGTH OF THE 
3

b  SEGMENT  

 

The equation of the 
32

y straight line which passes through the 
2

B point is: 

 2232 bb xtgyxtgy    

The coordinates of ),(
333 bb

yxB   are determined by the following equations of straight lines: 

        
32

y ,        (1.5)    cos1 otVLx ,                     

o
b C

bbnb
tt 3221

3


      (8*)       thus 
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(1.55)        cos)(
322113

o

o

b C

V
bbnbLx  

(1.56)       22322113 ]cos)([ bb
o

o
b xtgy

C

V
bbnbLtgy    

 The coordinates of the
32

BB segment are:        
2332

[
bb

xxBB    ,   ]
23 bb

yy      

                 cos
33123

o

o

bbb C

V
bxxx  

                  cos
cos

sin

33123
o

o

bbb C

V
byyy




                 where: 

(1.57)        
2221131

cos)(
b

o

o

b
x

C

V
bnbLx   

(1.58)         2221131 ]cos)([ b
o

o
b xtg

C

V
bnbLtgy    

                                                  2

23

2

23

2

3
)()(

bbbb
yyxxb   

Having solved the above equation we obtain: 

(1.59)         
32

3331

3
s

ss
b


                          where: 

(1.60)         
31

s (




cos

sin

3131 bb
yx  ) cos

o

o

C

V
 

(1.61)         1
32

s (
cos

cos

o

o

C

V
)2 

(1.62)          )( 2

31

2

3132

2

3133 bb
yxsss   

 

 

 

 

 

9. POINT 
4

B  AND THE LENGTH OF THE 
4

b  SEGMENT 

The equation of the 
42

y straight line which passes through the
3

B point is: 

                  3342 )180()180( b
o

b
o xtgyxtgy    

                  3342 bb xtgyxtgy    

 The coordinates of the ),(
444 bb

yxB   point are given by the straight line equations: 

       
42

y ,      (1.9)  )sin(cos239  otVgLxy ,        

o
b C

bbbnb
tt 43221

4


      (9*)   

                     thus 

(1.63)          


 34322134 )sin(cos)(2[
cossin

cos
b

o

o
b y

C

V
bbbnbgLx




 

                          + ]3bxtg  

(1.64)          
4b

y    


3432213 )sin(cos)(2[
cossin

sin
b

o

o y
C

V
bbbnbgL




   

                            333 ] bbb xtgyxtg    

 

The coordinates of the
43

BB segment are:        
3443

[
bb

xxBB    ,   ]
34 bb

yy   
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                  )sin(cos
cossin

cos

44134





o

o

bbb C

V
bxxx




 

                  
4134 bbb

yyy     )sin(cos
cossin

sin

4



o

o

C

V
b




        where: 

(1.65)          


 33221341 )sin(cos)(2[
cossin

cos
b

o

o
b y

C

V
bbnbgLx




 

                           33 ] bb xxtg    

(1.66)          
41b

y    


332213 )sin(cos)(2[
cossin

sin
b

o

o y
C

V
bbnbgL




 

                             33 ] bb xtgxtg    

                                                2

34

2

34

2

4
)()(

bbbb
yyxxb          

Having solved the above equation we obtain: 

(1.67)            
42

4341

4
s

ss
b


             where: 

(1.68)            
41

s (  sincos
4141 bb

yx  ) 
o

o

C

V
 

 cossin

sincos




         

(1.69)            1
42

s ( 
o

o

C

V
 

 cossin

sincos



 )2 

(1.70)            )( 2

41

2

4142

2

4143 bb
yxsss   

 

 

 

 

 

10.  POINT 
5

B   AND THE LENGTH OF THE 
5

b  SEGMENT 

The equation of the 
52

y straight line which passes through the
4

B  point is: 

 4452 )90()90( b
o

b
o xtgyxtgy    

The coordinates of ),(
555 bb

yxB   are determined by the straight line equations:   

    
52

y  ,        (1.7)    sin
47 o

tVLy ,             

o
b C

bbbbnb
tt 543221

5


     (10*)    thus                            

(1.71)           
4454322145

]sin)([
cos

sin

bb
o

o

b
xy

C

V
bbbbnbLx 




 

(1.72)            sin)(
54322145

o

o

b C

V
bbbbnbLy  

The coordinates of the 
54

BB  segment are:         
4554

[
bb

xxBB  ,      ]
45 bb

yy   

                    
5145 bbb

xxx     sin
cos

sin

5
o

o

C

V
b




 

                     sin
55145

o

o

bbb C

V
byyy            where: 

(1.73)            ]sin)([
cos

sin

443221451 b
o

o

b
y

C

V
bbbnbLx 




 

(1.74)            
443221451

sin)(
b

o

o

b
y

C

V
bbbnbLy   
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                    2

45

2

45

2

5
)()(

bbbb
yyxxb   

Having solved the above equation we obtain: 

(1.75)            
52

5351

5
s

ss
b


                         where: 

(1.76)            
51

s (




cos

sin

5151 bb
xy  ) sin

o

o

C

V
 

(1.77)            1
52

s (
cos

sin

o

o

C

V
)2 

(1.78)            )( 2

51

2

5152

2

5153 bb
yxsss   

 

 

 

THE GALILEAN TRANSFORMATION 

When recalculating points   
51

,...,AA ,   
51

,...,BB  from the OXY inertial system into another 

inertial system O’EQ, the Galilean transformation is applied. 

 

I.1.6   THE COORDINATES OF THE 
51

,...,AA  POINTS IN THE O’EQ   SYSTEM   

POINT          ),(
111 aa

qeA ,                          

o
a C

a
t 1

1
                                 relationship (1*) 

 (1.79)            coscos
11111

o

o

aoaaa C

V
axVtxe  

(1.80)             sinsin
11111

o

o

aoaaa C

V
ayVtyq  

POINT          ),(
222 aa

qeA ,                           

o
a C

aa
t 21

2


                        relationship (2*) 

(1.81)             cos)(cos
212222

o

o

aoaaa C

V
aaxVtxe  

(1.82)             sin)(sin
212222

o

o

aoaaa C

V
aayVtyq =

2
L  

POINT          ),(
333 aa

qeA ,                            

o
a C

aaa
t 321

3


                   relationship (3*) 

(1.83)              cos)(cos
3213333

o

o

aoaaa C

V
aaaxVtxe  

(1.84)              sin)(sin
3213333

o

o

aoaaa C

V
aaayVtyq  

POINT            ),(
444 aa

qeA ,                          

o
a C

anaaa
t 42321

4


          relationship (4*) 

(1.85)               cos)(cos
423214444

o

o

aoaaa C

V
anaaaxVtxe  

(1.86)               sin)(sin
423214444

o

o

aoaaa C

V
anaaayVtyq  
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POINT               ),(
555 aa

qeA ,                      

o
a C

aanaaa
t 542321

5


          relationship (5*) 

(1.87)                  cos)(cos
5423215555

o

o

aoaaa C

V
aanaaaxVtxe  

(1.88)                
45423215555

sin)(sin L
C

V
aanaaayVtyq

o

o

aoaaa
  

 

 

 

 

I.1.7      THE COORDINATES OF THE  
51

,...,BB   POINTS IN THE  O’EQ SYSTEM  

POINT               ),(
111 bb

qeB ,                           

o
b C

b
t 1

1
                               relationship  (6*) 

(1.89)                  coscos
11111

o

o

bobbb C

V
bxVtxe  

(1.90)                  sinsin
11111

o

o

bobbb C

V
byVtyq  

POINT                ),(
222 bb

qeB ,                         

o
b C

bnb
t 221

2


                       relationship (7*)   

(1.91)                  cos)(cos
2212222

o

o

bobbb C

V
bnbxVtxe  

(1.92)                  sin)(sin
2212222

o

o

bobbb C

V
bnbyVtyq  

POINT                ),(
333 bb

qeB ,                         

o
b C

bbnb
t 3221

3


                   relationship (8*) 

(1.93)                  
132213333

cos)(cos L
C

V
bbnbxVtxe

o

o

bobbb
  

(1.94)                   sin)(sin
32213333

o

o

bobbb C

V
bbnbyVtyq  

POINT                 ),(
444 bb

qeB ,                         

o
b C

bbbnb
t 43221

4


            relationship (9*) 

(1.95)                   cos)(cos
432214444

o

o

bobbb C

V
bbbnbxVtxe  

(1.96)                    sin)(sin
432214444

o

o

bobbb C

V
bbbnbyVtyq  

POINT                 ),(
555 bb

qeB ,                        

o
b C

bbbbnb
t 543221

5


       relationship (10*) 

(1.97)                    cos)(cos
5432215555

o

o

bobbb C

V
bbbbnbxVtxe  

(1.98)                   
45432215555

sin)(sin L
C

V
bbbbnbyVtyq

o

o

bobbb
  
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I.1.8     THE LENGTHS OF DISTANCES TRAVELED BY A RAY OF LIGHT AFTER 

            LEAVING THE 
0

S  SLIT AT THE ANGLE   IN THE O’EQ SYSTEM 

(1.99)                 2/12

1

2

11
)(

aau
qea   

(1.100)                  2/12

12

2

122
])()[(

aaaau
qqeea   

(1.101)                  2/12

23

2

233
])()[(

aaaau
qqeea   

(1.102)                  2/12

34

2

344
])()[(

aaaau
qqeea   

(1.103)                  2/12

45

2

455
])()[(

aaaau
qqeea   

 

I.1.9      THE LENGTHS OF DISTANCES TRAVELED BY A RAY OF LIGHT  AFTER  

             LEAVING THE 
0

S  SLIT AT THE ANGLE    IN THE O’EQ SYSTEM 

(1.104)                   2/12

1

2

11
)(

bbu
qeb   

(1.105)                   2/12

12

2

122
])()[(

bbbbu
qqeeb   

(1.106)                    2/12

23

2

233
])()[(

bbbbu
qqeeb   

(1.107)                    2/12

34

2

344
])()[(

bbbbu
qqeeb   

(1.108)                    2/12

45

2

455
])()[(

bbbbu
qqeeb   

 

I.1.10     THE RELATIVE DIFFERENCE OF THE DISTANCES TRAVELED BY THE  

              RAYS OF LIGHT REACHING ONE POINT ON THE SCREEN M  

 

       

         

        

   

 

 

 

 

 

 
 

 

 

 

 

 

  

                                           

 

 

 

          

Fig. 4     The points 
55

, BA   of the screen M, togaether with their coordinates 
55

,
ba

ee , which   

             were reached by the rays of light after leaving the slit 
0

S  at the angles , .                                                                                                                                                                                                                                                                                                                         

The shift of the interference fringes is calculated with respect to point  Mo with its coordinate 

o
e on the screen M.                                                                                                     
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The coordinates  
5a

e , 
5b

e of the points  
5

A ,
5

B  of screen  M  are dependent upon the variables  

w
V,,,  ,  thus the coordinates  

5a
e , 

5b
e  take on the form of the following functions: 

                           ),,(
55 waa

Vee             relationship (1.87),    

                           ),,(
55 wbb

Vee             relationship (1.97),    

                                                 where:      

o

o

w C

V
V   . 

The interference of the rays of light which have left the slit 
0

S  at the angles ,  will only 

take place on the screen M (fig. 4) when points
5

A and
5

B coincide. This means the coordinates 

are equal:              
55 ba

ee                              

The relative difference of distances traveled by the rays of light in a vacuum is: 

                           
ouuuuuuuuoo

bbbbaaaal  /)]([/
54315321

  

The relative difference of distances traveled by the rays of light in the PP plate is: 

                           
puupp

bal  /)(/
24

       where: 

                           
2

/ n
op

                         relationship (1.4) 

Thus the total relative difference of distances traveled by the rays of light: 

                           
ppooo

lll  ///       

After transformation of the relationship we obtain: 

(1.109)                 
ouuuuuuuuuuo

bbbbnbaanaaal  /)]([/
543221542321

  

Let us introduce a symbol
w

R : 

(1.109a)               
ow

lR /  

The relative difference of distances 
w

R  depends upon the variables 
w

V,,,    and therefore 

it is defined by the function:  

(1.109b)               ),,,(
www

VRR    

 We need to calculate the 
w

R  value at any  Mo  point with its coordinate 
0

e  on the screen M, 

given the angle  
n

  and at a fixed value 
oow

CVV /    

 In order to do this we write the following equations: 

 (11*)                    
ownnaa

eVee  ),,(
55
   

 (12*)                     
ownnbb

eVee  ),,(
55
  

 Then by applying the appropriate computational software, we can compute such a pair of 

angles ),(
nn

 which satisfies the equations (11*) and (12*).  Knowing the pair of angles  

),(
nn

 at fixed values of 
wn

V,   we calculate the value of  
w

R : 

(1.109c)               ),,,(/
wnnnwow

VRlR      

  

 

 

 

I.1.11   THE DIFFERENCE IN PHASES OF THE LIGHT RAYS REACHING ONE                    

                POINT ON THE SCREEN  M 

 

Reaching one point on the screen the light rays may be identical or may vary in their phases.                  

The phase difference   of the light rays equals:  

          

 (1.110)             )(2 wRfrac                    

                         where :  )( wRfrac  is a function denoting the fractional part of the
w

R value. 
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I.1.12       THE INTERFERENCE FRINGES SHIFTS’ VALUES 

                   

On the screen M let us select a point Mo  (Fig. 4) with the 
0

e  coordinate (a fixed line in the 

telescope), in relation to which we will calculate the shift of interference fringes.  

      

Corresponding to both the angle 0
1
  and the coordinate 

0
e , the pair of angles ),(

11
   

satisfies the following equations:   

                                    
01155

),,( eVee
waa

   

                                    
01155

),,( eVee
wbb

                  so 

(1.111)               ),,,(
1111 www

VRR    

 

Corresponding to both the angle 
2

 and the coordinate 
0

e , the pair of angles  ),(
22

    

 satisfies the following equations: 

                                     
02255

),,( eVee
waa

   

                                     
02255

),,( eVee
wbb

                 so 

(1.112)               ),,,(
2222 www

VRR    

 

Leaving the slit 
0

S at angles  ),(),,(
2211

  the rays of light reach the Mo point of the 
0

e  

coordinate.  

 

Calculated with respect to the Mo point, the value k  of the interference fringe shift depending 

upon the angle  
2

  and a fixed value 
w

V  is given by the following:   

 

(1.113)                122 ),( www RRVk   

 

The formula (1.113) can be applied to calculate the values of interference fringe shifts with 

respect to any Mo  point on the screen M, after rotating the interferometer by any angle  
2

  

and with the  
oow

CVV /   fixed at any value. 

Tables 2 – 7 give the values of the interference fringe shifts with respect to point Mo of the 

coordinate 

                      0e 0.1508323849500 m        for different values of 
w

V,
2

  .   

The calculations were carried out using PROGRAM abIM presented in Chapter IV of this work. 

 

In the calculations – the relative approximations of points 55 , BA  to point 0M  are described 

by the following inequalities of coordinates (Fig.4): 

                     | oa ee /)( 05  |< 710 ,         | ob ee /)( 05  |< 710      

 

The abovementioned approximations of points 
55

, BA , 0M  are presented in tables 1 to 7.   
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     TABLE 1 

     Relative differences of distances  ),,,( 1111 www VRR      at  0
1
  

  

                                                     

             

 

 

 

 

                 

     TABLE 2 

     Values of the interference fringe shifts ),(
2 w

Vk     at   4/
2

 . 

  

        

       0e 0.1508323849500 m                                        
oow

CVV /  

      0
1
                                          ),,,(

1111 www
VRR    

      1                  2                 3          4 

    
w

V             
1

             
1
        

1w
R  

     -            rad            rad          - 

  5105    3109927724200.3    3105979062811.3   131191320.3002  

     410   3100401177788.4    3105999661255.3   131389021.3002  

4105.1    3100874626306.4    3106020261381.3   131715822.3002  

 4102    3101348069753.4    3106040863191.3   132187332.3002  

 4105    3104188623939.4    3106164509390.3   137796524.3002  

    310   3108922475042.4    3106370720997.3   157966110.3002  

    210   2103404460634.1    3100111245783.4   035276114.3005  

    1.0   2107524614853.9    3100443961357.8   873337429.3591  

      0e 0,1508323849500 m                                                                          
oow

CVV /    

     4/
2

                          ),,,(
2222 www

VRR           122 ),( www RRVk       

      1                 2                 3           4           5 

    
w

V             
2

             
2

        
2w

R    k ),(
2 w

V  

     -            rad            rad          -        - 

   5105    3109808002849.3    3106312205475.3   131123494.3002  5107826.6   

     410   3100161740048.4    3106665944817.3   131130047.3002  4105897.2   
4105.1    3100515477145.4    3107019684075.3   131130624.3002  4108519.5   

 4102    3100869214137.4    3107373423250.3   131127927.3002  3100594,1   

  4105    3102991633943.4    3109495856587.3   131133321.3002  3106632.6   

    310   3106528992281.4    3103033239157.4   131122723.3002  2106843.2   

    210   2101020022430.1    2100670526531.1   127546019.3002  9077.2  

    1.0   2104730696699.7    210438571775.7   359887719.2998  5134.593  

 

                Values of  ),,,(
1111 www

VRR    are presented in Table 1 
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    TABLE 3     

    Values of the interference fringe shifts ),(
2 w

Vk     at   2/2  . 

  

 

      

                       

          

    TABLE 4 

    Values of the interference fringe shifts  ),(
2 w

Vk     at   4/2  . 

  

 

     0e 0,1508323849500 m                                                                 
oow

CVV /  

    2/2                       ),,,(
2222 www

VRR            k
122

),(
www

RRV   

 

      1                 2                 3           4           5 

    
w

V             
2

             
2

        
2w

R    k ),(
2 w

V  

     -            rad            rad          -        - 

  5105    3109481063201.3    3106438135238.3   131174750.3002  5106570.1   

     410   3109507858220,3    3106917808334.3   131358381.3002  5100640.3   
4105.1    3109534650605.3    3107394485340.3   131651654.3002  5104168.6   

  4102    3109561440353.3    3107877166255.3   132074803,3002  4101252.1   

  4105    3109722123456.3    3100755333837.4   137086849.3002  4100967.7   

    310   3109989717621.3    3105552592553.4   155067484.3002  3108986.2   

    210   3104761228482.4    2103197013721.1   654317494.3004  3809.0  

    1,0                              No light  interference. 

   

                  Values of  ),,,(
1111 www

VRR    are presented in Table 1   

      0e 0 .1508323849500 m                                                                             
oow

CVV /  

     4/2                          ),,,(
2222 www

VRR            k
122

),(
www

RRV   

 

      1                 2                 3           4           5 

   
w

V             
2

             
2

        
2w

R     k ),(
2 w

V  

    -            rad            rad          -        - 

  5105   3109770099624.3     3105633856451.3   131245467.3002  5104147.5   

     410  3100085926102.4     3105309252527.3   131621789.3002  4103276.2   
4105.1   3100401744976.4     3104984654283.3   132255159.3002  4103933.5   

  4102   3100717556242.4     3104660061717.3   133149623.3002  4106229.9   

  4105   3102612264039.4     3102712625612.3   143733676.3002  3109371.5   

    310  3105769500845.4     3109467354079.2   181635327.3002  2103669,2   

    210  2100246766501.1   3108848934357.2   295667190.3007  2603.2  

    1.0  2105318706130.6   2109987865247.5   388665504.3656  5153.64  

 

                 Values of  ),,,(
1111 www

VRR    are presented in Table 1  
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   TABLE 5 

   Values of the interference fringe shifts  ),(
2 w

Vk    at   2/2  . 

   

     

                                 

 

      

 

 

 

When the interferometer’s relative speed reaches the value of 4102 wV  (see Table 2), the 

shift of interference fringes takes its maximum value of | k | 3100594.1  . At any lower 

relative speed values 4102 wV  the shifts are not observable. 

The value of the interferometer’s relative speed cannot be lower than the value of the Earth’s 

relative rotation speed, which is about 410 . Hence the relative speed  of the interferometer 

located on the Earth’s surface takes values within the following range: 

(1.114)                                410  ≤  4102 wV           

 

   

 

 

 

 

 

 

 

 

 

                

     0e 0 .1508323849500 m                                                                            
oow

CVV /  

     2/2                          ),,,(
2222 www

VRR           k
122

),(
www

RRV   

      1                 2                 3           4           5 

    
w

V             
2

             
2

        
2w

R     k ),(
2 w

V  

     -            rad            rad          -        - 

  5105    3109427465247.3     3105478800773.3   131185539.3002  6107810.5   

     410   3109400662317.3     3104999139404.3   131360117.3002  5108904.2   
4105.1    3109373856748.3      3104519481943,3   131657823,3002  5107999.5   

  4102    3109347048543.3     3104039828393.3   132070757.3002  4101657.1   

  4105    3109186143951.3     3101161989182.3   137057367.3002  4101539.7   

    310   3108917758758.3     3106365903231.2   154764384.3002  3102017.3   

    210   3104041833711.3   3109896769791.5   355161566.3004  6801.0  

    1.0  3109309811291.1   2101514853874.9   098078500.3024  7752.567  

                 Values of  ),,,(
1111 www

VRR    are presented in Table 1 
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I.1.13  VALUES OF THE INTERFERENCE FRINGE SHIFTS AFTER CHANGING 

          THE MIRROR-SLIT DISTANCE 

 

We will calculate the values of the interference fringe shifts with respect to the Mo point at a 

given angle  
n

  after the distance between the mirror 
2

Z  and  the slit 
0

S  has been changed. 

The distance
2

L  is replaced by the distance 
22

LL  . 

A pair of angles ),(
22

 , which corresponds to: the angle 
n

 , the coordinate 
0

e  and the  

distance  2L , satisfies the following equations: 

                                 
0255

),,( eVee
wnaa

   

                                 
0255

),,( eVee
wnbb

   

The relative difference of distances traveled by rays of light equals:  

(1.115)                ),,,(
222 wnww

VRR             

A pair of angles  ),(
2222 LL 

 , which corresponds to: the angle 
n

 , the coordinate 
0

e  

and the distance 
22

LL  , satisfies the following equations: 

                                  
022255

),,,( eLVee
wnLaa




  

                                  
ownLbb

eLVee 


),,,(
22255

  

The relative difference of distances traveled by rays of light equals:   

(1.116)                ),,,,(
2222222

LVRR
wnLLwLw



  

The rays of light leaving the slit 
0

S  at angles ),(
22

 and ),(
2222 LL 

 reach the Mo point on 

the screen M. 

Depending on the distance increment 
2

L  the k   value of the interference fringe shift with 

respect to the Mo point equals: 

 (1.117)               
2222

),,(
wLwwn

RRLVkk 


                

 In Tables 6 and 7 the values of interference fringe shifts were given with respect to the Mo 

point of the coordinate 0e 0.1508323849500 m  at the distance 
o

L  25.1
2

  and at the angles  

4/
n

  and    2/
n

. 

    

 
MEASURING LENGTH WITH THE MICHELSON’S INTERFEROMETER    

                                            

The evaluation of the measured length.  

                                                                               

                                      2L       the real length, 

                       of kL )2/(       the length determined with the physical model, 

 

In the mathematical model the length  
2

L  is known by assumption, whereas in the physical 

model the length  
2

L  is the length that is measured. 

                                           

The accuracy of the measured length fL   is specified by the following formula:  

                 | 
2

2

L

LL f




| 
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    TABLE 6   

    Values of the interference fringe shifts 
22222

),,(
wLww

RRLVkk 


at   4/
2


n

.   

 

 

 

     

           

    TABLE 7                                                                                                                                

    Values of the interference fringe shifts 
22222

),,(
wLww

RRLVkk 


 at   2/
2


n

.                                                                                                                                 

     

 

    0e 0,1508323849500 m            mL 2.12                oL  25.12             
oow

CVV /                                                                                             

    4/
2


n

                                       ),,,,(
22222222

LVRR
wLLwLw



    

                                                                
22222

),,(
wLww

RRLVkk 


          

 

      1                 2                 3           4           5 

    
w

V             
22 L

             
22 L

        
22 Lw

R


       k  

     -            rad            rad          -        - 

  5105    3109807980798.3    3106312205475.3   631105534.3004    4999.2  

     410   3100161717998.4    3106665944817.3   631112083.3004    4999.2  

4105.1    3100515455094.4    3107019684075.3   631112664.3004    4999.2  

  4102    3100869192088.4    3107373423250.3   631103798.3004    4999.2  

  4105    3102991611891.4    3109495856587.3   631109196.3004    4999.2  

    310   3106528970232.4    3103033239157.4   631104763.3004    4999.2  

    210   2101020020223.1              
2106531067052.1   627534225.3004    4999.2  

 

               Values of   ),,,(
2222 www

VRR     are presented  in Table 2 

    0e 0 .1508323849500 m            mL 2.12              oL  25.12            
oow

CVV /                                                                                             

    2/
2


n

                                     ),,,,(
22222222

LVRR
wLLwLw



                              

                                                                             
22222

),,(
wLww

RRLVkk 


 

      1                 2                 3           4           5 

    
w

V             
22 L

            
22 L

        
22 Lw

R


        k  

     -            rad            rad          -        - 

  5105    3109481041137.3     3106438135238.3   631162956.3004    4999.2  

     410   3105078361429.3    3106917808334.3   631340421.3004    4999.2  

4105.1    3109534628511.3    3107397485340.3   631639860.3004    4999.2  

  4102    3109561418243.3    3107877166255.3   632056843.3004    4999.2  

  4105    3109722101257.3    3100755333837.4   637068890.3004    4999.2  

    310   3109989695271.3    3105552592553.4   655043356.3004    4999.2  

    210   3104761203444.4              
2103197013721.1   154293369.3007    4999.2  

 

              Values of   ),,,(
2222 www

VRR     are presented  in Table 3 
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An Example. 

The accuracy of the measured length.                                                                                    

Tables 6, 7: 

                          4999.2k ,     02 25.1 L  ,    0)2/( kL f   .                                                                                

 So                     |
2

2

L

LL f




|    5

0

0 104
25.1

)2/4999.225.1( 





    

 

  

 

 

 

 

I.2      WHY WERE THERE NO SHIFTS OF INTERFERENCE FRINGES OBSERVED  

          IN THE MICHELSON’S EXPERIMENTS? 

 

The relative speed 
w

V  of the interferometer located on the Earth is specified by the 

relationship (1.114):               410 ≤ 4102 wV   

Within this range of relative speeds 
w

V , the shift values are very small | k | 3100594.1     

(see Table 2), hence non-observable.  

 

 

 

 

 

 

 

 

 

I.3  WHY WAS ‘THE VALUE OF THE INTERFERENCE FRINGES SHIFT’ CALCULATED BY  

       ALBERT MICHELSON NOT CONFIRMED DURING THE EXPERIMENTS? 

 

With the aim of calculating the values of the interference fringe shifts, Albert Michelson 

considered the mutually perpendicular rays of light that were reaching the 
21

, ZZ  mirrors. 

This happens when the rays of light leave the slit 
0

S  at the angles 0 ,  0 . 

Table 8  contains calculations which indicate that the rays of light that leave the slit 
0

S  at the 

angles  0 ,  0  reach distant points 
55

, BA of the screen M. The distance between the 

two points amount to over one thousand wavelengths of light, therefore no interference of the 

light waves occurs.   

                    

 Let us introduce the following symbols:       

 

(1.118)   
owrwrw

lVRR /),(            the relative difference of distances traveled by the  

                                                        rays of light, reaching distant points 
55

, BA of the  

                                                        screen M in  the O’EQ system, 

 

(1.119) ),(),(
12 wrwwrwr

VRVRK     the difference of relative differences of distances                                                        

                                                       
rw

R . 
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In accordance with the results of calculations contained in Table 8 at 2/
2

  and  410
w

V , 

the 
r

K  takes the value: 

            040724.02355474159.29961948224790.2996),(),( 12  wrwwrwr VRVRK . 

The calculated value of 040724.0rK  is not the shift value k . The distance |
55 ba

ee  | 

between the points 5A and 5B  on the screen M which were reached by the rays of light  

equals:  00425749.1168    when 2/2   and  o4151451.1981  at 01  . 

It is evident  that by assuming perpendicularity between the light rays and the 
21

, ZZ mirrors,  

Albert Michelson actually calculated  the value of  │ rK │ 04.0    (1.119)  and not the shift 

value  k   (1.113).  

 

 

 

TABLE 8 

The table presents the values of: ),(
1 wrw

VR  ,   ),(
2 wrw

VR  and  |
55 ba

ee  |
o

/  together with 

the coordinates  
55

,
ba

ee  of the
55

, BA  points reached by the light rays that have left the slit 
0

S  

at the angles 0 ,  0  and  410/ 
oow

CVV . These calculations were carried out with 

the computational program PROGRAM IntM (see Chapter IV).   

 

 

  

 

             

 

 

 

I.4    THE VELOCITIES AT WHICH THE CENTERS OF THE EARTH AND THE SUN TRAVEL               

         WITH RESPECT TO THE AETHER  
      (in relation to a specific absolute OXoYoZo system)   
      
In relation to the aether, the interferometer velocity 

o
V


 on the Earth’s surface is the sum of 

three vectors: 

(1.120)                                     
sezsro

VVVV


  

                                                                       
410/ 

oow
CVV  

      0 ,         0                                 ),(),(
12 wrwwrwr

VRVRK   

       1              2               3                4           5 

    
1

  ),,0(
15 wa

Ve    ),,0(
15 wb

Ve   

 

|
55 ba

ee  |
o

/   ),(
1 wrw

VR   

   rad          m          m           -        - 
     0     71401693470.0     11413383820.0              4151451.1981  2355474159.2996  

 

    
2

  ),,0(
25 wa

Ve   ),,0(
25 wb

Ve   |
55 ba

ee  |
o

/  ),(
2 wrw

VR   

    rad           m      m          -      - 
   2/     51404053264.0     61410944715.0       04255749.1168  1948224790.2996  
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The vector 
r

V


 is the peripheral velocity of a point i.e. a place on the Earth’s surface where 

the interferometer (observer) is located. The plane of this vector is parallel to the one at the 

equator. 

Its modulus value equals:   skmVr /cos464.0  ,     where: 

                                is the latitude of the interferometer’s position. 

 

The vector 
zs

V


 is the velocity of the Earth’s center around the Sun. This vector is located on 

the Earth’s ecliptic plane.           

                                  skmVzs /29.29min   ,        skmVzs /28.30max   

In our considerations an approximate modulus value of the vector 
zs

V


 will be adopted, namely     

                                  skmVzs /30  

(1.121)                        410/ 
ozs

CV  

 

The vector 
se

V


 is the velocity of the Sun’s center with respect to the aether. This vector is 

perpendicular to the ecliptic plane, which is conclusive from starlight aberration.  

The vector 
r

V


can be omitted due to its small modulus value compared to that of the
zs

V


vector.  

Consequently the equation (1.120) takes the following form:  

(1.122)                        
sezso

VVV


  

Since the vectors 
sezs

VV


,   are mutually perpendicular, the following equation can be written: 

(1.123)                        222

sezso
VVV     

 According to (1.114):  410 ≤ 4102 wV ,     
oow

CVV /    and therefore 

(1.124)                       410 ≤ 4102/ oo CV                

The interferometer is located on the Earth’s surface so its velocity  
o

V


 is equal to the 

velocity of the point on the Earth’s surface (a laboratory) with respect to the aether, which is 

approximately the velocity 
ze

V


 of the Earth’s center with respect to the aether:  

(1.125)                       
zeo

VV


    

After considering the inequality (1.124) we obtain: 

(1.126)                       410 ≤ 4102/ oze CV  ,            oze VV     

 

This inequality (1.126) specifies the speed  of the Earth’s center relative to the aether, 

expressed with respect to the speed of light oC . 

 

The speed seV  of the Sun center  with respect to the aether can be determined from the four 

relations i.e. (1.121), ((1.123), (1.125) and (1.126). 

 

From the equation (1.123):  222

zsose
VVV         

 and the equation (1.125) we obtain: 

                                  222

zszese
VVV        

consequently after applying (1.121) and (1.126), we further obtain: 

(1.127)                        0 ≤ 41073.1/ ose CV  

The inequality (1.127) specifies the speed of the Sun’s center relative to the aether, 

expressed with respect to the speed of light oC .  
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I.5       THE VELOCITY AT WHICH THE CENTER OF OUR GALAXY TRAVELS 

            WITH RESPECT TO THE AETHER  

        (with respect to a specific absolute OXoYoZo system)   
    
With respect to the aether, the center of the Sun travels at the velocity  

se
V


 which is the sum 

of the following vectors:     

(1.128)                        
gesgse

VVV


  

The vector 
sg

V


 is the velocity with which the Sun center rotates around the center of our 

Galaxy.  It takes an approximate modulus value of: skmVsg /250  

(1.129)                        41033.8/ 
osg

CV  

The vector 
ge

V


is the velocity at which the center of our Galaxy moves with respect to the 

aether. 

From the equation (1.128) we obtain: 

(1.130)                        
ge

V


sesg
VV


    

   

Then from  (1.127) , (1.129) and (1.130)  we can determine the speed 
ge

V  of the Galaxy 

center with respect to the aether: 

(1.131)                        44 10)73.133.8(/10)73.133.8(   oge CV             

The inequality (1.131) specifies the speed  of the Galaxy center relative to the aether, 

expressed with respect to the speed of light oC . 

    

Knowing the apex ),( sgsgsgA  of solar motion around the Galaxy center, we can estimate 

approximately the apex ),( gegegeA   of the Galaxy center’s motion with respect to the aether:  

                         
sgge

   ,                    

                         o

sgge
180 ,                                 

                                              where:   
gesg

 ,       declination of apexes, 

                                                           
gesg

 ,       right ascension of apexes. 
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             CHAPTER  II   
 

           THE VELOCITY OF THE INTERFEROMETER                   

 

 

 

 

 

 
The interferometer absolute velocity 

o
V


 is the sum of three vectors: 

                                    
sezsro

VVVV


       as in relation (1.120) 

            where:  
r

V


         peripheral velocity of the point U on the Earth’s surface where      

                                     the interferometer (the observer) is located, 

                        
zs

V


        the velocity at which the Earth’s center revolves around the Sun, 

                        
se

V


        the velocity at which the Sun’s center travels relative to the aether. 

              
The aether-relative velocity 

se
V


of the Sun center is perpendicular to the plane of the ecliptic. 

However, the direction of that velocity (a vector) is not known. Hence in our deliberations, we 

will consider two vectors perpendicular to the ecliptic plane, namely: 

                        vector   
se

V


  and   vector     
1se

V


se
V


    (Fig. 8). 

Thus two vectors are obtained: 

(2.1)                 sezsr VVVV


01  

(2.2)                 
102 sezsr

VVVV


  

Therefore the interferometer absolute velocity 
o

V


 is:  

                        either the vector 
010

VV


       or the vector 020 VV


  

In this chapter the coordinates of the vectors  
01

V


 and   
02

V


  were established in the 

horizontal coordinate system.   
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II.1  THE PERIPHERAL VELOCITY 
r

V


OF THE U ),(   POINT ON THE EARTH’S SURFACE 

 

 

 

 

 

 

 

 

                   

          

  

                                            

 

 

                 

 

 

 

 

 

 

 

           Fig. 5           Peripheral velocity 
r

V


  and its azimuth 
r

A       

                              

SYMBOLS: 

1 the globe, 

2 the celestial meridian of the observer,  

  U ),(        a location (point) with geographical coordinates , ,  

                  at which the interferometer (the observer) has been located,                   

       lp        a vertical line which runs through the point U ),(  and the center of the globe O ,                           

     pha        the plane of celestial horizon i.e. its projection, which runs through the globe  

                  center O  and is perpendicular to the vertical line lp ,   

        ph        the plane of the horizon i.e. its projection, which runs through the point  

                  U ),(  and is perpendicular to the vertical line lp , 

        N        the northern point of the horizon,  

         S        the southern point of the horizon, 

uu SN line       the line of intersection between the horizon plane and the celestial meridian    

                  plane, both of which run through the U ),(  point, 

         R       the radius of the globe, 

        rA       the azimuth of the Earth’s peripheral velocity 
r

V


. 

 

The peripheral speed  rV  of the point U ),(  :                            

(2.3)           cosRVr  ,         where:        

                                                            the angular speed of the Earth’s rotation. 

 

The peripheral velocity 
r

V


is located on the horizon plane which runs through                     

the point U ),(  . 
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II.2  THE VELOCITY 
zs

V


 AT WHICH THE EARTH’S CENTER REVOLVES AROUND THE SUN 

       

 

 

 

 

 

 

       

 

 

 

        

 

 

 

                . 

 

 

 

 

 

 

 

 

 

        Fig. 6            The Earth’s motion on its orbit around the Sun. 

 

 
SYMBOLS: 

               a        an average Earth-Sun distance, 

               b        a small semi-axis of the Earth’s orbit, 

             r       a radius vector,  

                        true anomaly, 

                       an angle  ∡ ),( zsVr


, 

               p         annual precession within ecliptic (in longitude), 

             e        the eccentricity of the Earth’s orbit, 

              Sn       the center of the Sun, 

               Pz        a point on the orbit in which the center of the Earth is located, 

              
zs

V


       the velocity at which the center of the Earth revolves around the Sun,  

              A1       Winter’s position   (Earth’s location when astronomical winter starts), 

               A2       Summer’s position (Earth’s location when astronomical summer starts), 

               B1       Earth’s location at the time of spring equinox, 

               B1’     Earth’s location at the time of spring equinox of previous tropical year, 

              B2       Earth’s location at the time of autumn equinox, 

               No       Earth’s location at the beginning of a new calendar year of the UT time, 

               UT      Universal Time.  

 

                         B1’A2      spring,                  A2  B2      summer,  

                         B2 A1      autumn,                A1  B1       winter.    
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II.2.1         DETERMINING THE     ANGLE   

 

In the OX1Y1 system the coordinates of the Earth’s center on the orbit are defined as follows:                                      

        (13*)       





cos1

)1(cos
cos

2

e

ea
eareaxz




  ,              

cos1

)1( 2

e

ea
r




                                                                                                                                                                                                                                                                                                                                                

        (14*)       





cos1

)1(sin
sin

2

e

ea
ry z




                                                                          

 The equation of the line tangent to the Earth’s orbit in the ),(
zzz

yxP  point is: 

                      1
2

1

2

1 
b

yy

a

xx
zz ,          22 )(eaab   

After transformation we obtain:        
1

y  

zz

z

y

b
x

ya

xb 2

12

2

  

Thus the angular coefficient of the line tangent to the orbit in point ),(
zzz

yxP  equals:       

        (15*)       
3

tg  
z

z

z

z

y

x
ab

ya

xb 2

2

2

)/(  

 Applying equations (13*), (14*)  we obtain a quotient: 

                     




tge

ee

y

x

z

z 1

)1(sin

)cos1(

2





  

From the equation (15*) we obtain: 

(2.4)              arctg
3

 [ 2)/( ab (




tge

ee 1

)1(sin

)cos1(

2




 )],     0 ,    o180 ,     o360  

(2.5)              
2

 |
3

 |         (Fig. 6) 

(2.6)              arctg
0


ea

b
    (Fig. 6)       so 

(2.7)       
2

                     when          0 ≤
0

180 o  

(2.8)       
2

                     when          oo 180180
0

    

(2.9)       
2

180   o         when          o180  ≤ 
0

180 o  

(2.10)     
2

180   o         when          oo 360180
0

     

                            where:            true anomaly  (Fig. 6).   

   

              

       

 
                                 

II.2.2      DETERMINING THE   ANGLE  

The true anomaly  is the angle between the radius vector r   and the direction from the Sun 

center towards the point on the orbit nearest to the Sun i.e. the perihelion. 

Corresponding to a specific time, the  angle can be determined from the Kepler second law:  

                     constC
dt

d
r 

1

2 
 

                     
cos1

)1( 2

e

ea
r




      (the modulus of the radius vector)         

 

From the above the following integral is obtained: 

                      

1

22 )]1([
)(

C

ea
t


 

2)cos1( 



e

d

  
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After integration we have: 

(2.11)          
1

22 )]1([
)(

C

ea
t


 [ 

22 1

1

)cos1()1(

sin

eee

e




 

  (
e

tge
arctg

e 



 1

)2/(1

1

2
2

2

 )]+
2

C  

Let us adopt an initial condition:  

                    0      0t ,       hence the integration constant 0
2
C ,    so 

                    

1

22 )1(
)(

C

eea
t


 (

e

tge
arctg

ee 



 1

)2/(1

1

2
2

2

     




cos1

sin

e
 ) 

From the condition that o180     
2

)(
rg

T
t        where:  

rg
T   is the stellar year, we can 

determine the 
1

C  constant 

                      
21

2)1(

2 21

22


eeC

eeaTrg




                  hence: 

(2.12)             
2

22

1

1

)1(2

eT

ea
C

rg 





               then  

(2.13)             



2

1
)(

2
rgTee

t


  (
e

tge
arctg

ee 



 1

)2/(1

1

2
2

2


   





cos1

sin

e
 ) 

The )(t  function is of negative value when  o180  .             

In order to avoid negative time values we introduce two functions: 

(2.14)              )()(
1

 tt                    when     0 ≤  
o180  

(2.15)              )()(
2

 tTt
rg
            when    oo 360180   

Then we define the following symbols:    

                       
rz

T       tropical year 

                       
z

T        the duration of astronomical winter. 

                       )360()90(
1241

  o

rg

o

z
tTtT  (Fig. 6) which after transformation 

                       )360()90(
14

  oo

z
ttT  

            Angle  p
14

      (Fig. 6),   where:    

(2.16)              pTTp rzz )/(     precession in the ecliptic (in longitude) during the time of   

                                               astronomical winter. 

Therefore 

(2.17)               )360()90( 11   oo
z tptT . 

If the astronomical winter duration time  
z

T  is known, the 
1

  angle can be determined from 

the equation (2.17) by the method of successive approximations.  

Let us say that aT   means the time which has elapsed from the moment the astronomical 

winter of the UT time started (point 
1

A , Fig. 6) up to the moment the Earth is nearest to the 

Sun (the perihelion).  

aT  can be determined from the relationship: 

                       )()360()360( 1112  tttTT oo
rga   

(2.18)               )( 1tTa   

 

Then let us say that bT  means the time which has passed from the start of astronomical 

winter up to the end of a calendar year of the UT time  (point No , Fig. 6). 

                       ab TT   
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The difference of the ba TT ,  times equals: 

                      )360( 52  o
rgba tTTT  .  

After transforming the equation, the following is obtained:  

                      )()360( 55  ttTT o
ba        so   

       (16*)        )( 5tTT ba   

Referring to equation (2.11) and adopting an initial condition:  

                       5        0)( t      

with a constant value
1

C  specified by the relationship (2.12),  

an integration constant 
2

C  can be calculated: 

                       
2

1 2

2

rg
Tee

C


 (
e

tge
arctg

ee 



 1

)2/(1

1

2 5

2

2


   

5

5

cos1

sin





e
) )(

5
t ,  

                )(
52

tC  .      

Having considered the equation (16*) we obtain: 

(2.19)              ba TTC 2  

Now we can specify the relationship between the UT time and the    angle i.e. true anomaly:  

(2.20)               )()()(3 ba TTtt                  when      0 ≤  
o180  

(2.21)               )()()(4 barg TTtTt           when     oo 360180   

From equations (2.20) and (2.21) the value of the   angle for any given time UT can be 

calculated with the use of the method of successive approximations. 

 

 

 

 

 

II.2.3     AZIMUTH AND THE ALTITUDE OF THE EARTH’S CENTER VELOCITY 
zs

V


 

The definitions that follow refer to to the following vectors: 
zs

V


, 
se

V


and 
sese

VV



1

.  

The 
se

V


and 
1se

V


vectors are also the velocities of the Earth’s center.                                 

The declination   of a vector is the angle between the vector and the plane of the celestial 

equator.      

The Greenwich hour angle GHA  of a vector is a dihedral angle between the semi-circle of the 

celestial meridian in Greenwich and the hour semi-circle which runs through the vector. The  

GHAangle counting starts at the semi-circle of the celestial meridian in Greenwich and up 

towards the West.  

The local hour angle LHA  of a vector is a dihedral angle between the celestial meridian 

semi-circle of the observer and the hour semi-circle which runs through the vector. 

The right ascension    of a vector is a dihedral angle between the hour semi-circle which 

runs through the spring equinoctial point i.e. the Aries point and the hour semi-circle which 

runs through the vector. The right ascension counting starts at the Aries point up towards the 

East. 

The altitude H  of a vector is an angle between the vector and the horizon plane. 

Starting from the northern point of the horizon, the azimuth A  of a vector is a dihedral angle 

between the celestial meridian of the observer and the semi-circle which runs through the 

vertical line and the vector; whereas starting from the northern direction ( uN ,, Fig. 9) the  

azimuth A  of a vector is an angle between the uu SN  line and the projection of the vector on 

the horizon plane that runs through the point U ),(  . 

The observer is located in the same place as the interferometer.                                      

The above definitions correspond to the definitions which refer to celestial bodies.   

                      

                  



 39 

           

                     

 

 

     

 

 

 

 

 

 

 

 

 

 

 
            
Fig. 7       Coordinates of the equatorial system: declinations, right ascensions.   
                                          

SYMBOLS:            O                the center of the globe,    

                           1              celestial equator,        

                           2              ecliptic,  

             3              celestial zone, 

                        4, 5              hour semi-circles, 

                         Sn                  the center of the Sun, 

                         PB              the Aries point,         

                           inclination of the ecliptic to the equator, 

                          
s

              right ascension of the Sun, 

                          s              declination of the Sun, 

                         
zs

              right ascension of the zsV


 velocity, 

                         
zs

              declination of the zsV


 velocity, 

                                        an angle  ∡ ),( zsVr


     relationships (2.7 – 2.10) 

From two perpendicular spherical triangles, shown in Fig. 7, the right ascension 
zs

  as well 

as the declination  
zs

 of the Earth’s center velocity 
zs

V


will be determined.  

                           

                                            cos
1

tgktg
s
 ,    hence 

(2.22)                 




cos1

s
tg

arctgk                         when         0 ≤ 
s

 o90 ,     (2.28a) 

(2.23)                 




cos
180

1

so
tg

arctgk                when         o

s

o 27090   

(2.24)                 




cos
360

1

so
tg

arctgk                when        o

s

o 360270 
 

 

(2.25)                 
12

kk                   (Fig. 7). 

                           cos
2

tgktg
zs
  ,        hence 
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(2.26)                   )cos(
2

 tgkarctg
zs
                    when            oo k 9090

2
  

(2.27)                   )cos(180 2  tgkarctgo
zs            when              oo k 27090

2
  

 

                                            sinsinsin
2

k
zs
 ,      hence 

(2.28)                   arcsin
zs

 )sin(sin
2

k
  

If the value of s  is very small, then 9286,90o  as the true anomaly 846,760 .  

The interval (2.26) is satisfied if  9286.0)9286.90()( 0
1  fracfrack   . 

          852.0)cos9286.0( 00   tgarctgs . Hence the interval (2.22) takes the form as follows: 

(2.28a)                  00 90852.0  s   

The angles in the equatorial system which are necessary to determine the coordinates of the 

vector 
zs

V


in the horizontal system are: 

(2.29)                   
zszs

GHAariesGHA   

                           
zszs

GHALHA                  so 

(2.30)                    
zszs

GHAariesLHA  ,   where:                   

 GHAaries      Greenwich Hour Angle of the Aries Point,  

     
zs

GHA      Greenwich Hour Angle of the  
zs

V


velocity,  

     
zs

LHA      Local  Hour Angle of the  
zs

V


velocity,  

         ZS      right ascension of the  
zs

V


 velocity, 

                 longitude of a place (point U, Fig. 5) where the interferometer (the observer)    

                   Is located.           

The altitude 
zs

H  of velocity   
zs

V


 in the horizontal system: 

               sinsincoscoscossin
zszszszs

LHAH  ,          where:                                           

                  the latitude of a place (point U, Fig. 5) where the interferometer (the observer)  

                     Is located.         Hence:         

(2.31)       )sinsincoscosarcsin(cos 
zszszszs

LHAH        

The azimuth
zs

A  of velocity 
zs

V


, calculated within the range from  0  to  o360   starting from 

the northern point of the horizon, is expressed as: 

                 zs
zs

zs
zs LHA

H
A sin

cos

cos
sin


         supplement (S.31).        

                 




coscos

sinsinsin
cos

zs

zszs

zs H

H
A


      

 Let us introduce the following symbols: 

(2.32)        




coscos

sinsinsin

zs

zszs

zs H

H
d


  ,            ( zsd =

zs
Acos ) 

(2.33)         /
zszs

dz  |
zs

d | ,       090zsA ,   0270zsA .          Therefore 

(2.34)        arcsin)3(90
zszs

o

zs
zzA   (

zs
zs

zs LHA
H

sin
cos

cos
)    

 

 

II.2.4  THE SPEED 
zs

V   AT WHICH THE EARTH’S CENTER REVOLVES AROUND THE SUN   

The speed  
zs

V at which the center of the Earth revolves around the Sun can be calculated 

from the Kepler second law:     
1

2 C
dt

d
r 


 


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We can write    MCM
td

d
rr 1)( 

 ,      where:  M   the mass of the planet.  

                       )180(sin)90(cos 00 


 zszs VV
td

d
r ,      so                                         

(17*)                MCMVr zs 1
0 )180(sin                                                       

   
                                

The left-hand side of the equation (17*) expresses the modulus of the planet’s angular 

momentum (Fig. 6). From the equation ( 17*) we obtain: 

                        
sin

1

r

C
V

zs
 ,    where:  

2

22

1

1

)1(2

eT

ea
C

rg 





      relationship (2.12),    

                                                                
cos1

)1( 2

e

ea
r




       the modulus of the radius vector,  

                                                                    angle          relationships (2.7 - 2.10),  

Hence                                                                   
rg

T        stellar year.  

(2.35)                 




sin1

)cos1(2

2eT

ea
V

rg

zs




        

                          

II.3 THE VELOCITIES 
se

V


  AND 
sese

VV



1

  AT WHICH THE SUN CENTER MOVES WITH   

      RESPECT TO THE AETHER 
  

 

 

 

         

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8    The coordinates of the vectors  
se

V


 and  
sese

VV



1

  (declinations, right ascensions). 

The 
se

V


  and  
1se

V


 vectors are also the velocities of the Earth’s centre.                                                                                                                                                 
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SYMBOLS IN FIG. 8: 

0       the center of the globe, 

   1         plane of the celestial equator (its projection), 

 1 a         the celestial equator, 

              2         plane of the ecliptic (its projection), 

                       the inclination of the ecliptic to the equator, 

            PB         the Aries point, 

            seV


        the velocity at which the Sun center moves with respect to the aether, 

   sese VV


1         the velocity at which the Sun center moves with respect to the aether, 

            se         right ascension of the seV


velocity, 

            1se        right ascension of the 
sese

VV



1

 velocity. 

 

              

  

 

 

 

 

              TABLE 9  (refers to Fig. 8)                  

 

The following relationship specifies the speed of the Sun’s center relative to the aether, 

expressed with respect to the speed of light 0C : 

                        0 ≤ 4
0 10.73.1/ CVse         (1.127). 

 

 

 

 

  

II.3.1    AZIMUTH AND THE ALTITUDE OF THE  
se

V


  VELOCITY  

The Local Hour Angle  
se

LHA of the  
se

V


 velocity: 

(2.36)           
sese

GHAariesLHA  

The altitude 
se

H of the 
se

V


velocity: 

(2.37)          )sinsincoscosarcsin(cos 
sesesese

LHAH   

The azimuth of the  
se

V


velocity, calculated within the range from 0  to o360 starting from the 

northern point of the horizon is: 

                     
se

se

se

se
LHA

H
A sin

cos

cos
sin


  

                     




coscos

sinsinsin
cos

se

sese

se H

H
A


  

Let us introduce the following symbols: 

(2.38)             




coscos

sinsinsin

se

sese

se H

H
d


 ,         ( sed =

se
Acos ) 

(2.39)             /
sese

dz  |
se

d | ,       090seA ,   0270seA .           Therefore 

(2.40)            arcsin)3(90
sese

o

se
zzA  (

se
se

se LHA
H

sin
cos

cos
). 

 

  Vector  Modulus of the  

        vector 

Right ascension of 

the vector 

Declination of the 

vector 

    seV


            seV  

 

o

se
270

 
)90( o           o

se
90  

    1seV


            seV   
o

se
90

1
     )90(

1
  o

se
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II.3.2     THE AZIMUTH AND THE  ALTITUDE OF THE 
1se

V


 VELOCITY 

                             

The Local Hour Angle  
1se

LHA  of the velocity 
sese

VV



1

 : 

(2.41)            
11 sese

GHAariesLHA   

The altitude  
1se

H of the  
1se

V


 velocity: 

(2.42)           )sinsincoscosarcsin(cos
1111


sesesese

LHAH     

The azimuth of the 
1se

V


velocity is calculated within the range from 0 to o360 starting from the 

northern point of the horizon as follows: 

                     
1

1

1

1
sin

cos

cos
sin

se
se

se

se
LHA

H
A


    

                     




coscos

sinsinsin
cos

1

11

1
se

sese

se H

H
A


                     

We introduce the following notations: 

(2.43)             




coscos

sinsinsin

1

11

1
se

sese

se H

H
d


 ,            ( 1sed =

1
cos

se
A ) 

(2.44)             /
11 sese

dz  |
1se

d | ,     0
1 90seA ,    0

1 270seA .       so 

(2.45)            arcsin)3(90
111 sese

o

se
zzA   (

1
1

1 sin
cos

cos

se
se

se LHA
H


)  

 
The angles ,  are the geographical coordinates of the U point (Fig. 5) in which the 

interferometer (the observer)  is located. 

The previously introduced relationships (2.31), (2.34), (2.37), (2.40), (2.42) and (2.45) for 

calculating the altitudes and the azimuths of velocities relate to the astronomical horizon 

plane which runs through the globe center.  

This plane is perpendicular to the vertical line running through the U ),(  point (Fig. 5). 

The abovementioned relationships apply as well as to the horizon plane which runs through 

the U ),(   point and is also perpendicular to the vertical line.  

                                                                                             

 

 

 

 

II.4      SUM OF VELOCITIES  IN THE HORIZONTAL SYSTEM   

                                                

Let us introduce a rectangular system of coordinates O’ U1U2U3 (Fig. 9) with the two axes 

O’ U1 and O’ U2 on the horizontal plane which runs through the point U ),(  . The  O’ U1  

axis coincides with the uu SN  line. The O’ U3 axis coincides with the vertical line which runs 

through the point  U ),(    (Fig. 5).   
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Fig.9             The rectangular system of coordinates  O’ U1U2U3 

 

The     vectors represent the projections of these vectors on the horizon plane 

which runs through the point U .  

The coordinates of the velocities: 

 

                       ]0,,0[ 2urr VV 


 

                       ],,[ 321 uzsuzsuzszs VVVV 


 

                       ],,[ 321 useuseusese VVVV 


 

                      ],,[ 3121111 useuseusese VVVV 


 

 

(2.46)                cos2 RVV rru            (2.3), 

(2.47)          zszszsuzs AHVV coscos1            (2.31), (2.34), 

(2.48)          zszszsuzs AHVV sincos2   

(2.49)          zszsuzs HVV sin3  , 

(2.50)              seseseuse AHVV coscos1         (2.37), (2.40), 

(2.51)              seseseuse AHVV sincos2   

(2.52)              seseuse HVV sin3  

(2.53)          1111 coscos seseseuse AHVV            (2.42), (2.45), 

(2.54)          1121 sincos seseseuse AHVV   

(2.55)          131 sin seseuse HVV      

 

 
II.4.1    VELOCITY                                                                         

                                    (2.1) 

,
1

,, ,, sesezs VVV


),( 

010
VV




sezsr
VVVV



01
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The coordinates of the velocity  :   ],,[ 30120110101 uuu VVVV 


  

(2.56)                   11101 useuzsu VVV   

(2.57)                   222201 useuzsuru VVVV   

(2.58)                   33301 useuzsu VVV   

The modulus of the velocity  :  

(2.59)                   2
301

2
201

2
10101 uuu VVVV   

 The altitude and the azimuth  of the velocity: 

             (18*)       010101101 coscos AHVV u   

             (19*)       010101201 sincos AHVV u   

             (20*)       0101301 sin HVV u   

From the equation  (20*) the altitude  of the velocity   can be determined:  

(2.60)                   
01

301

01 arcsin
V

V
H

u
   

From the equation (19*)  we obtain:      
0101

201

01
cos

sin
HV

V
A

u
    

Let us introduce the following notation: 

(2.61)                   /10101 uVz  | 101 uV |,     ,     . 

The azimuth  of the velocity   calculated within the range from 0 to    starting  

from the northern point of the horizon is:  

 (2.62)                  
0101

201

0101
0

01
cos

arcsin)3(90
HV

V
zzA

u
  

 

  

 

II.4.2      VELOCITY  

                             ,              (2.2) 

 

The coordinates of velocity   :  

                            ],,[ 30220210202 uuu VVVV 


  

 

(2.63)                    111102 useuzsu VVV    

(2.64)                    2122202 useuzsuru VVVV    

(2.65)                    313302 useuzsu VVV                      

The modulus of the velocity : 

(2.66)                    2
302

2
202

2
10202 uuu VVVV    

The altitude  and the azimuth of the velocity   . 

                 (21*)     020201102 coscos AHVV u        

                 (22*)     020202201 sincos AHVV u    

                 (23*)     0202302 sin HVV u    

From the equation (23*) the altitude  of the vector  can be determined: 

01
V


01
V


01
H

01
A

01
V


01
H

01
V


0
01 90A 0

01 270A

01
A

01
V


o360

020
VV




102 sezsr
VVVV




02
V


02
V


02
H

02
A

02
V


02
H

02
V

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 (2.67)                 
02

302

02 arcsin
V

V
H

u
    

From the equation (22*) we obtain:    
0202

202

02
cos

sin
HV

V
A

u
   

Let us introduce the following notation:                                                                          

(2.68)                 /10202 uVz  | 102 uV |    ,    . 

The azimuth of the velocity   calculated within the range from 0 to  starting from 

the northern point of the horizon is:  

(2.69)                
0202

202

0202
0

02
cos

arcsin)3(90
HV

V
zzA

u
   

     

                                                                                                                     

                            

 

 

 

 

 

 

 

                                                                                                          

                          

                       

                           TABLE 10 

Table 10  gives the values of astronomical parameters, used in a computation program, 

referred to as PROGRAM Vo1Vo2 in Chapter IV, to calculate the coordinates of velocities:   

zs
V


,  01V


  (2.1),   02V


 (2.2). 

 

 

 

II.5      AN EXAMPLE  

We are to calculate the coordinates of the  
zs

V


, 
01

V


 (2.1) and  
02

V


  velocities (2.2) at the 

 U point (Fig. 5) with its geographical coordinates   '3450o ,   '4121o  on 15
th
 December 

2009 at 10.30 UT. The coordinates of the vectors should be determined in a horizontal 

system.  
                   

In order to solve the problem we will use the previously mentioned PROGRAM Vo1Vo2     

(see Chapter IV). In addition to the astronomical quantities, contained in Table 10 and 

introduced into the program, we also need to introduce the values of the angles 

corresponding to the case-specific time, namely:                       

              -  Greenwich Hour Angle of the Aries point GHAaries ,  

              -  right ascension  of the Sun,    

              -  angle   (true anomaly). 

The values of both i.e. the Greenwich Hour Angle of the Aries point and the sun right 

ascension can be found in The Nautical Almanac and they read as follows:  

        7166666.2380GHAaries  ,         70416666.338GHAsun ,   

                                                      where:  GHAsun     Greenwich Hour Angle of the Sun.   

        9875.9970416666.3387166666.238 0 GHAsunGHAariess ,     so 

        0125.2609875.99360 000 s .    

                                                            

0
02 90A 0

02 270A

02
A

02
V


o360

s


Parameter        The value of the parameter 

                     

                     

                    

                    

                   

                    

                     

                     

a km310149597 

e 01671.0

 rado 4090877.0439.23 

p 292.50"

rg
T 256366.365d

rz
T 242199.365d

R km1.6378

 srad /10292115.7 5
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The value of the angle   can be calculated from relationships (2.13) - (2.21). 

 

Astronomical winter duration time 
z

T .  

Astronomical winter started on 21st December 2008 at 7.312 mh  UT.  

Astronomical spring started on 20th March 2009 at 7.4311 mh  UT. 

Hence the astronomical winter duration time  
z

T   in the years 2008 -  2009 equals: 

                                           daysT mhd
z 986111.88402388  .    

Precession (in longitude) during astronomical winter: 

from the relationship (2.16)  003403.0252.12292.50)( 0''''  rzz TTp  .    

From the equation (2.17)       )360()003403.090(986111.88 1
0

1   tt oo   and with the use of 

the method of successive approximation, the value of the angle 
1

 can be calculated: 

                                           212402.131
o     

From the relationship (2.18): daystTa 966631.12)( 1   . 

bT  is the time that elapsed from the start of the 2008 astronomical winter until the end of the 

2008 calendar year i.e.         daysT mhd
b 497430.103.561110  ,   

                             hence     daysTT ba 469201.2 . 

                                       oo 360180   
The time  )(

4
t  that elapses from the start of the 2009 calendar year until 10.30 UT on 15

th
 

December 2009 will amount to:  

                                          dayst hd 4375.3495.10349)(4      

From the equation (2.21) we have: 

                                          469201.2)(4375.349  tTrg     and with the use of the method 

of successive approximations, the value of the angle  can be calculated:   

                                          37062.3410   

Having introduced to  PROGRAM Vo1Vo2   the values of the following angles: 

                            566666.500   ,                  0125.2600s  ,  

                            683333.210   ,                  7166666.2380GHAaries   ,  

                                                                           37062.3410              

              and   0
4107546.0 CVse

      (the speed of the Sun’s center relative to the aether   

                                                       – Tables 14 & 15, no. 3),                                              

we obtain the coordinates of velocities  
zs

V


,    
01

V


  and  
02

V


  in the horizontal system. 

THE RESULTS OF CALCULATIONS:    

   

     

                       

                                             

                                                

                                                

 

 

                                                                                                                                                                                                               

                         
                                                                                                                                                                           

                                                                                              

                            

    

 

          

           zsVVector


 

    skmVzs /260827.30  

    634934.30zsH  

    711221.2710zsA  

    100 VVVector


      (2.1)    200 VVVector


       (2.2) 

    skmV /567689.3710   

    917536.380
10 H  

    707819.283 0
10 A  

   skmV /544063.3720   

   762285.310
20 H  

   634191.259 0
20 A  
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         CHAPTER III 
 

        NEWTON’S SECOND LAW OF MOTION 
 

Michelson experiments and the values of the interference fringe shifts, calculated from the 

mathematical model, confirm the premise of the existence of the aether and the applicability 

of the Galilean transformation. 

Therefore let us apply the Galilean transformation. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

                             

 

Fig. 10 

 

 

Then let us introduce two rectangular coordinate systems (Fig. 10).   

 

1) Preferred absolute inertial rectangular coordinate system 1, named 

OXoYoZo, motionless with respect to the aether. 

2) An inertial system 2 i.e. the O’EQW system that is in motion relative to 

the system 1 with constant absolute velocity 
o

V


.              

Axis   O’E is parallel to axis OXo. 

Axis   O’Q is parallel to axis OYo.   

                  

The times in both inertial systems 1 and 2  are equal:  ttt  12  (the absolute time (3.51)).   

                           

The velocity  
1

V


 of particle P relative to the inertial system 1 (Fig. 10) equals:  

(3.0)             
21

VVV
o


  ,                          

where:  
2

V


  the velocity of particle P in the inertial system 2.                         

 

The accelerations of particle P in inertial system 1 and 2 respectively:    

               

                    
1

1 a
dt

Vd 


 ,      



dt

VVd

dt

Vd
o

)(
21



 
2

2 a
dt

Vd 


  ,      then     12 aa


 .    
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Isaac Newton adopted a constant mass for the particle: 

                    constmm  12   

According to Newton’s second law of motion, the equations of motion for particle P have the 

following form:  

(3.1)         11
1

1
11

1

)(
am

dt

Vd
m

dt

Vmd
F





 ,                  22

2
2

22
2

)(
am

dt

Vd
m

dt

Vmd
F





 ,      hence 

                                                           12 FF


  

Therefore Newton’s second law of motion is invariant with respect to the Galilean 

transformation. This means that Newton’s laws of mechanics are the same for both inertial 

systems 1 and 2.  

 

 

 

III.1  VARIABLE MASS OF PARTICLE CONSIDERED IN NEWTON’S SECOND                    

        LAW OF MOTION                                                          
The existence of the aether and the applicability of the Galilean transformation have been 

described in Chapter I. Experimental data indicate that the mass of a particle depends upon its 

speed. Then let us consider the variability of the particle mass in Newton’s second law of 

motion.  

INERTIAL SYSTEM 1 (motionless with respect to the aether)    

 

The expression given by H. A. Lorentz for   is defined by: 

(3.2)             
2

1
)/(1

1

o
CV

          

 where:         
1

V       the speed of particle P in the inertial system 1,                                        

                    
o

C      the speed of light in a vacuum with respect to the aether. 

(3.3)          
max1

V = 
o

C ,       
1

V  < 
max1

V ,         
1

V 
max1

V   

The speed  
max1

V = 
o

C is the limit speed of the particle P in the inertial system 1. That speed 

is identical in all directions. 

The condition (3.3) limits the speed of particle P with respect to the aether. 

  

We assume:                       

(3.4)             1111 )( omVmm                                                         

where:          )0( 111  Vmmo       rest mass of particle P in the inertial system 1, 

                                )( 11 Vm       the mass of moving particle P in the inertial system 1, 

                                              the Lorentz relation  (3.2). 

                   

Then let us  introduce the variable mass of particle P into Newton’s second law of motion 

(3.1).  The mass can be defined by (3.4): 

(3.5a)            
dt

Vmd
F

)( 11
1



             where:       1111 )( omVmm       relationship  (3.4) 

(3.5b)           
dt

Vmd
F o )( 11

1


 
          which after differentiation takes the following form:   

(3.5c)            11
1

11 V
dt

d
m

dt

Vd
mF oo




 
                                                                                                      

(3.5d)            11111 V
dt

d
mamF oo

 
          

Relationships (3.5a - d)  express Newton’s second law of motion in the inertial system 1 after 

the variable mass of particle P has been introduced. 
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INERTIAL SYSTEM 2 (O’EQW system) 

The limit speed 
max2

V of the accelerating particle P depends upon the angle 2,0  between 

vectors  0V


  and  2V


 . 

(3.6)                 2,0  ∡ ),( 20 VV


     so   )( 2,0max2max2 VV   

 

DETERMINING THE SPEED max2V  

The speed 
max2

V  is the limit speed of the particle P  in the system 2 which moves at a fixed 

speed  
0

V  in a given direction (angle 2,0 ) with respect to the velocity  
0

V


. 

ASSUMPTIONS. 

The particle P is accelerated in any given direction in relation to the 
0

V


 velocity (Fig.11). 

1)  The velocity  
0

V


 is parallel to the OXo  axis.   

The coordinate of the velocity: 
0

V ,    where:   000 CV  .     

2) The force 
2

F


 acts on the particle in any given direction. The angle 2,0  represents  

    any angle.    

3) The velocity 0)0(
2

tV


.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Fig.11     The force 
2

F


 acts on the particle in any given direction (angle 2,0 ) in relation    

              to the velocity 
0

V


.   

  

Coordinates of the velocity 
max2

V


:                                        Coordinates of the velocity 
0

V


: 

2,0max2max2 cos[ VV 


,      2,0max2 sinV ,       ]0                         
00

[VV 


,          0 ,         0 ]   

0
max2

V  . 

 According to the Galilean transformation: 
max1max20

VVV


 so  the following equations can be 

written:    2
max1

2
2,0max2

2
2,0max20 )sin()cos( VVVV   ,          constCV  0max1     (3.3).                          

Hence the )( 2,0max2 V  is obtained as follows:                       
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(3.7)           ]cos)/(sin)/(1[ 2,0002,0
22

000max2  CVCVCV  ,      hence 

 

(3.7a)                002,0max2 )0( VCV  , 

(3.7b)                00
0

2,0max2 )180( VCV  . 

                                              

From the equation (3.7) we obtain the inequality:     00 VC  ≤ )( 2,0max2 V ≤ 00 VC  . 

 

If the particle P is accelerated in any given direction (3.6) then the Lorentz relation (3.2) 

takes the form as follows:    

(3.8)                 
2

max22 )/(1

1

VV
a



  ,        where:  max2V    relationship (3.7).    

                        max22 VV  ,       max22 VV   

  

When the particle P is accelerating along in the direction of the vector 
o

V


( 02,0  ), then the 

relation (3.8) takes the form of b :                          

(3.9)                 
2

2 )]/([1

1

oo

b

VCV 

       according to the equation (3.7a). 

 

When particle P is accelerating in the direction opposite to that of the vector 
o

V


  ( o1802,0  ), 

then the relation (3.8)  takes the  form of c : 

(3.10)               
2

2 )]/([1

1

oo

c

VCV 

       according to the equation (3.7b).                   

      

Let us assume: 

(3.11)                aomVVmm 22max222 ),(              

 

where:                           ),( 2max22 VVm      the mass of the moving particle P in the system 2, 

                               )0( 222  Vmmo      the rest mass of the particle P in the system 2,   

                                                   a       formula  (3.8).                              

 

Let us introduce to Newton’s second law of motion (3.1)  the variable mass of particle P. Its 

mass is determined by the relationship  (3.11):                                                                                                                                             

(3.12a)              
dt

Vmd
F

)( 22
2




        where:   aomVVmm 22max222 ),(        relationship  (3.11).                                                                                                                                                 

(3.12b)              
dt

Vmd
F ao )( 22

2


 

     which after differentiation takes the form of:  

(3.12c)               22
2

22 V
dt

d
m

dt

Vd
mF a

oao




 
        

(3.12d)               22222 V
dt

d
mamF a

oao

 
   

 

Relationships  (3.12 a - d)  express Newton’s second law of motion in system 2 after 

introducing a variable mass of the particle P. 
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III.1.1     THE VELOCITY OF THE PARTICLE  

 

THE VELOCITY OF THE PARTICLE IN SYSTEM 2, (in the O’ EQW system)    

                   

When the particle  P is accelerated in system 2, then  its speed  2V depends upon the direction 

the particle is accelerating towards with respect to the vector  
o

V


 .   

If we assume  constF 
2


   then from equation (3.12b) we obtain: 

                                  dt
m

F
tVd

o
a

2

2
2 )]([  ,                  dt

m

F
tVd

o
a

2

2
2 )]([  .  

After integration          4
2

2
2 )( Ct

m

F
tV

o
a  .        

From the premise that  00
2
 Vt    we obtain the integration constant 0

4
C .             

Hence       t
m

F
tV

o
a

2

2
2 )(  ,            tktV a 42 )(   ,       where:   

2

2

4
o

m

F
k  . 

The )(
2

tV   speed  we define as follows:   

(3.13a)      tktV
a 42

)(      when the particle P is being accelerated in any given direction (3.6)   

                                       with respect  to the vector  
o

V


   

(3.13b)      tktV
b 42

)(       when the particle P  is being accelerated from rest along the 

                                       direction of the vector  
o

V


    )0( 2,0  ,       

(3.13c)      tktV
c 42

)( 
   

  when the particle P is being accelerated in the direction opposite 

                                       to  that of  the vector  
o

V


  ( o1802,0  ).                                                                                   

       Where:   
a

     formula  (3.8),           
b

     formula (3.9),            
c

    formula  (3.10),                                           

                     t      time in which a constant force  
2

F


 is acting on the particle P. 

                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12          

The relationship between the speed  )(2 tV  and the time in which a constant force 
2

F


 is acting 

on the particle P.             

SYMBOLS:     1      equation  (3.13a),    

2   equation  (3.13b),  

                   3      equation  (3.13c).   
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III.1.2    THE ENERGY OF THE PARTICLE 

 

THE ENERGY OF PARTICLE IN SYSTEM 2 ( in the O’EQW system)                  

We assume that   2,0  ∡ constVV ),( 20


   (3.6),              0)0(2 tV   

When a force 
2

F


acts on particle P in system 2  then the elementary work performed within a 

distance   Ld


 is equal to:    LdFdE


 22 ,          where:     
dt

Vmd
F ao )( 22

2


 

        ( 3.12b) 

                                                                                    dtVLd
2


  

Then        
dt

Vmd
dE ao )( 22

2




  ao dmdtV (22 


ao dmVV () 222 


aV 2




22
) VVd


                                                                

                   ao dm (2 aVV  22


)

22
VVd


  ao dm (2 aV 2
2  )

22
dVV .                

Hence      ao dmdE (22  aV 2
2 )

22
dVV  

 

The differential ad  of the formula (3.8) equals:      

                              
2/32

max22
2
max2

22

])/(1[ VVV

dVV
d a


            so                                         

                              22 omdE  (
2/12

max22

22

2/32

max22

2

max2

2

3

2

])/(1[])/(1[ VV

dVV

VVV

dVV





)                 

Total work which needs to be performed in order to move the particle P from rest point A in 

system 2 to point B over the distance L at velocity  
2

V


  (Fig. 10)  equals:                                 

                              2E
2o

m  (
2/12

max22

22

2/32

max22

2

max2

2

3

2

])/(1[])/(1[ VV

dVV

VVV

dVV





) 

After integration we obtain:           6
2

max22

2
max22

2

)/(1

C

VV

Vm
E o 



  

From the assumption that   0
2
V      02 E   we obtain the equation: 

                             
6

2

max22
0 CVm

o
   so the integration constant 2

max226
VmC

o
 .  Hence                             

(3.14)                    2
max22

2
max22

2
max22

2

)/(1

Vm

VV

Vm
E o

o 



 ,             2
max22

2
max222 VmVmE oao    

 

Work 2E  equals the kinetic energy 
k

E  of the particle P. 

(3.15)                     2
max22

2
max222 VmVmEE oaok    

 

The speed 
max2

V  is defined by relationships (3.7).                                                                                                                            

The expression   2

max202
Vm  in  (3.15) represents the rest energy

o
E of the particle P for a given 

direction (3.6). 

(3.16)                 2

max22
VmE

oo
  

The expression ao Vm 2
max22    in (3.15) represents total energy

s
E of the particle P in system 2. 

(3.17)                 aos VmE 2
max22 . 

Hence (3.15) takes the following form:   )1(2
max22  aoosk VmEEE     

                                                             

(3.18)                 )1(2
max22  aok VmE    is the kinetic energy of the particle P in system 2.  

     

 After expanding the formula for a     (3.8)  in a power series we obtain: 
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                       ...)/(
42

31
)/(

2

1
1 4

max22
2

max22 



 VVVVa  

 For small speeds  2V   of the particle P: 2
max22 )/(

2

1
1 VVa  , hence the kinetic energy 

k
E  

specified by the formula  (3.18) equals:    

                       2

22

2

max22

2

max22 2

1
]1)/(

2

1
1[ VmVVVmE

ook
                          

(3.19)               2

222

1
VmE

ok
  

The formula  (3.19) defines kinetic energy of the particle P, which results from Newton’s 

second law of motion when the mass of the particle P is constant. 

The experiments with particles are carried out in laboratories that are located on the Earth 

and it is where system 2 (O’EQW) is also located. Despite Earth’s rotary and orbital motion 

round the Sun, for adequately small time intervals it can be assumed that system 2 is inertial 

and it moves with respect to system 1 ( OXoYoZo system)  at a constant velocity 
o

V


 which 

modulus is defined by the inequality (1.124):                                                

                          410
 ≤ 4

00 102/ CV  

Hence                 410

o
C ≤ 0

4
0 102 CV    

The value of the 
o

V  speed is small when compared with 
o

C and therefore it can be omitted in 

formulae  (3.8), (3.9) and (3.10). Having done that, the speed  
o

CV 
max2

 and consequently the 

formulae (3.8), (3.9) and (3.10)  take the following form: 

(3.20)                
2

2
)/(1

1

o

cba
CV

    .                                   

From relationships  (3.16),  (3.17) and  (3.18)   we obtain relationships that give approximate 

values of energies of the particle P in system 2: 

(3.21)                2

2 ooo
CmE                      rest energy, 

(3.22)                2
2

2
2 oaoos CmCmE         total energy, 

(3.23)                )1(2
2  aook CmE             kinetic energy.  

                  Where: a      formula (3.20).  

 

Now the relationship between total energy 
s

E of the particle and its momentum 
2

p


 needs to 

be expressed. 

From the equation (3.22) we obtain:        24
0

2
02

2
as CmE     

Then the following can be written:          24
0

2
02

2
as CmE     ( 2

0
2
2

2
0

2
2 CpCp  )  

The modulus of the particle’s momentum is: 2022 Vmp a ,        so 

                     2
0

2
2

22
02

24
0

2
02

2 CVmCmE aas   
2

0

2

2
Cp . 

After transforming this equation, we obtain the following: 

 

                     2
0

2
2

2
0

2
2

24
0

2
02

2 )/1( CpCVCmE as   ,       where: a    relationship (3.20). 

Hence            2

0

2

2

4

0

2

02

2 CpCmE
s

  ,      because     1)/1( 2
0

2
2

2  CVa . 

 

The ultimate relationship between total energy 
s

E  of the particle and its momentum 
2

p


 takes 

the form as follows: 

 

(3.22a)            2

0

2

2

4

0

2

02
CpCmE

s
 .   
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PARTICLE’S ENERGY IN SYSTEM 1 (in the OXoYoZo system)        

The energies of the particle P in system 1 can be determined in the same manner as those in 

system 2, with the use of formula (3.5b). 

 

The following  relationships determine the energies of the particle P:               

(3.24)                2

1 ooo
CmE                   rest energy,                                        

(3.25)                2
1

2
1 ooos CmCmE       total energy,   

(3.26)                )1(2

1
 

ook
CmE          kinetic energy, 

              where:       formula  (3.2). 

 

 

 

III.1.3          REST MASS OF THE PARTICLE WITH RESPECT TO THE AETHER 

Let us consider the mass of the particle P in systems 1 and 2: 

                       
2

1

1

11
)/(1

)(

o

o

CV

m
Vm



           so      
2

1

11
)/(1

)(

oo

o

o
CV

m
VVm



  

    
2

max22

2

2max22
)/(1

),(

VV

m
VVm o



                 so     222 )0( omVm       

                       )0()( 2211  VmVVm o   ,       hence  

(3.27)        
2

1
2

)/(1 oo

o
o

CV

m
m



 ,     then the rest mass of the particle P with respect to  

system 1 (with respect to the aether) equals: 

(3.27a)      ])/(
2

1
1[)/(1 2

2

2

21 ooooooo
CVmCVmm         because   1/ 

oo
CV                 

The quotient   
oo

CV /    is defined by the relationship  (1.124): 

              410  ≤  4
00 102/ CV  .       Hence   

            12
24 ])102(

2

1
1[ oo mm    ≤ 

2

24 ])10(
2

1
1[

o
m     and after reduction 

            12
8)1021( oo mm     ≤ 

2

8 )105.01(
o

m  .  

 

  

 

III.1.4   THE LAWS OF  MECHANICS                  

Velocities and accelerations of the particle P in inertial systems 1 and 2 are: 

              
21

VVV
o


 ,          12 aa


 ,          ttt  12  

The mass of the particle P in systems 1 and 2 are respectively: 

              
2

1

1

1
)/(1

o

o

CV

m
m



 ,         
2

max22

2

2
)/(1 VV

m
m o



                                                                    

              12 mm   

The forces acting upon particle P in systems 1 and 2 are: 

              
11111

V
dt

d
mamF

oo

 
        (3.5d),            22222 V

dt

d
mamF a

oao

 
       (3.12d),  

              )(
21111

VV
dt

d
mamF

ooo





 .                   Hence    12 FF


 .                         

After including the variable mass of the particle P, Newton’s second law of motion  (3.5a-d), 

(3.12a-d) has the form which is non-invariant with respect to the Galilean transformation. 

Hence Newton’s laws of mechanics are different in inertial systems 1 and 2.     
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III.1.5       DETERMINING THE 1F


  FORCE 

We determine the 
1

F


 force acting on the particle P in the system 1 when the same particle is 

acted on by the force constF 
2


  in system 2. 

ASSUMPTIONS A. 

The particle P is accelerated in the direction of the 
0

V


 absolute velocity.  

The angle  2,0 = ∡ 0),( 20 VV


    relationship (3.6).          

1) The absolute velocity 
0

V


 is parallel to the OXo  axis (Fig.10).  

The coordinate of the velocity:  
0

V ,   where:   000 CV   .    

2) The force  constF 
2


 acting on the particle P is parallel to the O’E  axis (Fig.10). 

 The coordinate of the force: 
2

F ;    0
2
F . 

3) The velocity  0)0(
2

tV


. 

The vectors 
1

F


, 
1

V


, 
2

V


are parallel to those axes, which also results from these assumptions.  

The coordinates of forces:                                The coordinates of velocities: 

[
2
F


  

2
F ,        0 ,       0   ]                                  [

0
V


  

0
V ,         0 ,     0   ]  

[
1
F


  

1
F (t),     0 ,       0   ]                                  [

2
V


  

2
V (t),      0 ,     0   ]               

           constF 
2

                                                 [
1
V


  

1
V (t),      0 ,     0   ]    

                                                          
00max2

VCV     relationship (3.7a).                                                                                   

              oVVV


 21         so          [1 V


 02 )( VtV  ,       0,        0  ]   

                                                   021 )()( VtVtV                                                                                                   

The  )(
2

tV   coordinate of the 
2

V


 velocity is defined by the relationship (3.13b).  

 

 

  

 

 

 

 

 

 

 

 

 

        
        

 

 

 

 

 

 

 

Fig.13  The coordinates  )(11 pttVV  , )(11 kk ttVV  , )(22 pttVV  , )(22 kk ttVV    
           of the 

1
V


, 
2

V

  velocities of the accelerated particle P. 

           According to the Galilean transformation 
021

VVV  ,    
021

VVV
kk
 . 
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From the (3.5b) equation we obtain: 

                   dt
m

F
Vd

01

1

1
)(




           where:       relationship (3.2).  Hence 

 (3.28)         dt
m

tF
tVd  

01

1
1

)(
])([       

Let us take any given time  
k

t  of the particle motion under consideration (Fig. 13).                      
We set a time interval:                                                                                                

(3.29)                            tttt
kk

 ,      0t                                              

If the set time interval is very small, it can be  assumed  that the coordinate value of the  
1

F


 

force which is acting on the particle within this interval is constant:  constF 
1

. 
Then the equation (3.28) takes the form as follows: 

                         dt
m

F
tVd

01

1
1 ])([  .      After integration we obtain:   

(3.30)              kCt
m

F
tV 

01

1
1 )(                          

From the condition:   
k

tt     kk VttV 11 )(  ,   
k1

   we obtain the following equation: 

                       
kkkk

Ct
m

F
V 

01

1

11
  hence the integration constant  

k
C  equals: 

(3.30a)            kkkk t
m

F
VC

01

1
11      where:     

(3.31)                                            
2

01

1
)/(1

1

CV
k

k


                                                    

(3.32)              
11

)( VttV
p
 ,    where: 

p
t  is within the time interval (3.29)  tttt

kpk
 . 

From the equations (3.30), (3.32) at  
p

tt  : 

(3.33)              
kp

Ct
m

F
V 

01

1

1
                                             

And from the equations (3.33) and (3.30a): 

(3.34)              
p

kkk

t

m

F

t
m

F
VV





01

1

01

1

111


 

From the equation (3.13b) at  
p

tt  : 

(3.35)                p
b t

m

F

V


02

2

2               where:  )(22 pttVV  ,       b      relationship (3.9).    

From the equation (3.13b) at 
k

tt  : 

(3.36)                 

02

2

2

m

F

V
t bkk
k


            where:  )(22 kk ttVV  , 

 (3.37)                                          
2

002 )]/([1

1

VCV k

bk



       
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Because the Galilean transformation is in operation, the times in both  frames of reference 1 

and 2 are equal: ptttt  12 . After comparing the left-hand sides of the equations (3.34) 

and  (3.35) the following is obtained: 

(3.38)      

02

2

2

01

1

01

1
111

m

F

V

m

F

t
m

F
VV

b
kkk








,     where:  2

000201
)/(1 CVmm      relationship (3.27a). 

From the equations (3.36) and (3.38) we obtain: 

(3.39)            
bkkb

kk

VV

CVVV

F

F





22

2
00111

2

1
)/(1)(




  ,             where:     constF 

2
, 

(3.40)             
021

VVV  ,   

(3.41)             
021

VVV
kk
 .     

By assumption, the time interval in (3.29) is very small and the inequality 
k

VV
22

  is fulfilled 

within, therefore the value of the 
22

/VV
k

  quotient is virtually equal to 1  and is less  than 1. 

If we define:    
kk

aVV 
22

/   then  

(3.42)              
22

VaV
kk

    ;                            999999.0
k

a  was adopted for calculations. 

The quotient  (3.39)     
21

/ FF   is the function of the 
0

V  and  
2

V  coordinate values: 

                                  0
2

1 (Vf
F

F
A , )

2
V     relationship (3.39) 

 For a given coordinate value  
0

V  of the  
0

V


 velocity, the  value of the quotient 
21

/ FF   

determined from the relationship (3.39) corresponds with every 
2

V  coordinate value of the 
2

V


 

velocity. Table 11 presents the values of the 
21

/ FF quotient for different values of  
00

/ CV  

and  
02

/ CV .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            TABLE 11      The values of the  
21

/ FF   quotient,                  constF 
2

 

0021 /( CVfFF A ,  )/
02

CV .         

Following (3.13b) )(2 tV  is known, then consequently 001 /( CVfF  ,  t )  is known too.    

From the results of calculations show in Table 11, it can be concluded  that the quotient 

21
/ FF  takes different values. 

 

 

 

 

  
00

/ CV                                        
02

/ CV  

       1       2       3         4       5 

    0.00001      0.2      0.49     0.69     0.97 

1.5 410  0,99999998 1.0000737 1.0001475 1.0001833 1.0002215 

     310  0.99991068 1.0005030 1.0009883 1.0012262 1.0014788 

     210  1.00039406 1.0051134 1.0100151 1.0124266 1.0149834 

      0.1 1.01805269 1.0623422 1.1156201 1.1426304                                                                                                                                               - 

            00
2

1 /( CVf
F

F
A ,  )/

02
CV      (3.39).          The angle 02,0        

            constF 
2

                                         999999.0
k

a  
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ASSUMPTIONS  B. 

The particle P is accelerated in the direction opposite to the 
0

V


 
absolute velocity.                                                                              

 The angle  2,0  ∡ oVV 180),( 20 


       relationship (3.6).       

1) The absolute velocity 
0

V


 is parallel to the  OXo  axis (Fig.10).  

The coordinate of the velocity:  
0

V ,    where:    000 CV   .    

2) The force  constF 
2


 acting on the particle P is parallel to the  O’E  axis (Fig.10).  

The coordinate of the force:  
2

F ,     0
2
F . 

3) The velocity   0)0(
2

tV


.                                                                                            

Following the above assumptions B, the vectors  
1

F


,  
1

V


 and  
2

V


 are parallel to these axes. 

Coordinates of forces:                                        Coordinates of velocities: 

[
2
F


  

2
F ,        0 ,       0   ]                                [

0
V


-

0
V ,         0 ,      0  ]  

[
1
F


  

1
F (t),     0 ,       0   ]                                [

2
V


 

2
V (t),       0 ,      0  ]  

          constF 
2

                                                [
1
V


 

1
V (t),       0 ,      0  ]   

                                                               00max2 VCV       relationship (3.7b).                                                    

                         oVVV


 21 ,     so        [
1
V


 02 )( VtV  ,        0,          0 ]       

                                                         021 )()( VtVtV    

                                                              

The  )(
2

tV   coordinate of the 
2

V


 velocity is defined by the relationship (3.13c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14  The coordinate  )(11 pttVV  ,  )(11 kk ttVV  ,   )(22 pttVV  , )(22 kk ttVV    
           of the 

1
V


, 
2

V

  velocities of the accelerated particle P. 

           According to the Galilean transformation   
021

VVV  ,    
021

VVV
kk
 . 

The quotient  
21

/ FF  of coordinate values of the  
1

F


,  
2

F

 forces can be determined as shown 

under assumptions A.   

 

Under assumptions B,  the quotient 
21

/ FF  is defined by the equation (3.43): 



 60 

 (3.43)           
ckkc

kk

VV

CVVV

F

F





22

2
00111

2

1
)/(1)(




 ,     where:    constF 

2
, 

                                                     

              relationship  (3.2),      
k1

   relationship (3.31),      c    relationship (3.10), 

(3.44)             
2

002 )]/([1

1

VCV k

ck



 ,      

(3.45)             
021

VVV  ,                  

(3.46)             
021

VVV
kk
 ,            

                      
22

VaV
kk

                    relationship (3.42) 

                      999999.0
k

a   was adopted for calculations.  

                      021 (/ VfFF B ,  )
0

C    relationship (3.43). 

For a given value of the coordinate  -
0

V  of the  
0

V


 velocity, the  quotient 
21

/ FF  determined 

from the relationship (3.43) corresponds with every 
2

V  coordinate of the 
2

V


 velocity. 

 

 Table 14 presents the 
21

/ FF quotients for different values of   00 / CV   and  
02

/ CV .  

                                                                

 

 

 
  

TABLE 12             The values of the 
21

/ FF quotient,                    constF 
2

  

  

 

 

 

 

 

 

 

 

 
 

 

 
00

/ CV                                        
02

/ CV  

       1       2       3         4      5 

    0.00001      0.2      0.49     0.69     0.97 

 1.5 410  0.99999998 0.9999283 0.9998536 0.9998164 0.9997786 

     310  0.99991068 0.9995032 0.9990161 0.9987770 0.9985242 

     210  1.00039406 0.9951119 0.9902803 0.9879245 0.9854337 

      0.1 1.01805269 0.9604290 0.9145631 0.8929439 0.8706278 

 

         00
2

1 /( CVf
F

F
B ,  )/

02
CV     (3.43).             The angle 0

2,0 180  

         constF 
2

                                                999999.0
k

a  
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III.2       TIME MEASURED BY ATOMIC CLOCKS  

 

Let us introduce the following notations: 

                 
1
         time measured by the clock in the inertial system 1, 

                 
2

        time measured by the identical clock in the inertial system 2. 

Then we adopt the assumptions: 

1) The clocks are located in the origins O and O’of the systems 1 and 2 respectively. 

2) The origin O of system 2 is in motion with constant velocity 
o

V


  along a straight 

line running through the origin O of system 1 (Fig 10). 

3) The clocks were synchronized 0
21
    when the origins of the two systems 

overlapped. 

 

Time measured by the atomic clock depends on the rest mass of its particles, therefore the 

following equations can be written: 

 

(3.48)         2/1

02

01

02

01

1

2

1

2 )(
m

m

m

m

A

A 











,        

   where:     21, AA      are atom vibration frequencies  in systems 1and 2 respectively 

                      and           2

0201
)/(1

oo
CVmm        relationship (3.27a). 

From the equations (3.48) and the relationship (3.27a):       

                 
12
  ( 2)/(1

oo
CV ) 2/1 4/12

1
])/(1[

oo
CV  ,    then    

(3.49)         4/12

12
])/(1[

oo
CV     

There is a dilation in the times measured by the clocks (3.49). The clock in system 2 is 

delayed with respect to the clock in system 1. 

 

The time measured by the clock in the inertial system 1, which presents a preferred absolute 

system, defines the absolute time t . 

 

(3.50)         
1
t          

Then applying (3.49) and (3.50) we obtain: 

(3.51)          
4/12

2

1 ])/(1[
oo

CV
t







     

Hence knowing the time 
2

  that has been measured  by the clock in the inertial system 2 

and the value of the system’s absolute speed 
o

V , the absolute time can be calculated from the 

relationship (3.51).       

 

And  as the values of the modulus of clock’s velocity  oV


 vary (relationship (1.120)), the times 

measured by the clocks on the Earth’s surface are subject  to continuous changes. 

 

 

 

 

 

 

 

 

 



 62 

III.3      DECAY OF PARTICLES 

 

An unstable particle is subject  to a decay process which course can be described by the 

following equations: 

(3.52)          )exp()(

1
0011 

t
Nmtm  ,    

(3.53)          )exp()(

2
0022 

t
Nmtm  ,       where: 

            
01

m , 
02

m     rest masses  of the particle in inertial systems 1 and 2,                               

                    
0

N     initial number of particles  (at 0t ), which is identical in inertial  

                             systems 1and 2, 

       )(
1

tm , )(
2

tm     masses of particles undecayed during t  period 

                             in inertial systems 1 and 2, 

               
1
 , 

2
      average life of particles in inertial systems 1 and 2.  

 

Let us write equations:     
2

01

02

1

2

)/(1

1

oo
CVm

m







,          const

1
   

Hence average life 
2

  of particles in the inertial system 2: 

(3.54)            
2

1

2
)/(1

oo
CV




      

The equations that define the number of undecayed particles during the decay time are:                                                                                                 

(3.56)           )exp()(

1
01 

t
NtN  , 

(3.57)           )exp()(

2
02 

t
NtN  ,                        

       where:  )(
1

tN , )(
2

tN       number of particles undecayed during t  period in the inertial  

                                           systems 1 and 2, 

                            
1
 ,  

2
      relationship (3.54). 

                              

 

                              

 

                                  

                          

                           

 

 

                                                        

 

 

 

 

                           

 

 

 

                          

 

   Fig.15    Graphic representation of equations (3.56) and (3.57).  
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A laboratory  can be regarded as the reference system  1, resulting from  the absolute speed 

of the Earth being very small (1.126). 

The average life time 1 of mezons   that are motionless  in relation to the  laboratory is: 

              s8
1 10603.2  .            

When the relative speed of mezons  reaches value 99.0/ 00 CV , their average  life time 2  

in system 2 i.e. where these particles actually are, can be calculated  from the      equation 

(3.54):    s78

2

1
2 10845.1088.710603.2

99.01

 






 ,   then       12   . 

Experimental results [3], [5] are in agreement  with the average life time 2  of mezons   

as calculated above. A compliance with relationship (3.54) is also confirmed by experiments 

with other unstable particles [1]. 

                                                

                              

 

Equations (3.52), (3.53), (3.56) and (3.57) imply that the decay process of particles in the 

inertial system 2 is slower than the decay of identical particles in the inertial system 1. 

The life time of particles in an inertial system that is in motion in relation to the aether is 

longer than the life time of identical particles in a preferred reference system which is 

motionless in relation to the aether.  

 

 

 

 

 

 

 

 

 

III.4      DETERMINING A SIDEREAL DAY WITH ATOMIC CLOCKS                   

 

We start with the following equation:              
2211

 JJ             which implies that 

(3.58)            
2

00
01

02

1

2

2

1

)/(1

1

CVm

m

J

J







,      where:                                

          2

0201
)/(1

oo
CVmm       relationship (3.27a),       

         
21

, JJ       Earth’s moment of inertia in systems 1 and 2 respectively, 

         
21

,       angular speed with which the Earth rotates in systems 1 and 2, 

      
0201

, mm        rest mass of particles on the Earth in systems 1 and 2, 

      0VVze         the speed  at which the  Earth’s center travels with respect to the  

                        aether (1.126). 

From the  relationship: 
2

1

1

2






T

T
,    we have      

1
2

1

2
TT




 ,          where: 

                                  
21

,TT       Earth’s sidereal day in systems 1 and 2. 

 

By applying equations (3.58) and inequality 1/
00
CV ,         we obtain:         

(3.59)                         1
2

001
2

00

2 ])/(
2

1
1[

)/(1

1
TCVT

CV

T 



  .             
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The time measured by an atomic clock on the Earth’s surface  i.e. in system 2 is: 

                                  1
2

001
4/12

002 ])/(
4

1
1[])/(1[   CVCV       relationship (3.49).     

Time 
2

  that is measured by the clock at  
11

T  is:                                     

(3.60)                          1
2

)00)1(2 ])/(
4

1
1[   CVT                                       

 
The difference 

T
R  of the duration of the two times:          

                                  
)1(22 TT

TR  , 

which after taking into consideration equations (3.59) and (3.60) becomes:    

(3.60a)                        
1

2

00
)/(

4

3
TCVR

T
  .      From equation (3.59) we obtain:   

(3.60b):                       2

0021
)/(1 CVTT           

 
 

Hence the 
T

R  of the time between the duration of the Earth’s sidereal day and the time 

measured by the atomic clock after the day elapsed:  

(3.61)   TCVCVRT
2

00
2

00 )/(1)/(
4

3
   ;     from the equations  (3.60a) and (3.60b),  where: 

                                  sTT 091.861642  .   
       

The 
Trg

R  of the time between the duration of the Earth’s stellar year and  the time measured 

by the atomic clock after the year elapsed: 

(3.62)                          rgTrg TCVCVR 2
00

2
00 )/(1)/(

4

3
  ,       where:  

                                   daysTrg 256366.365 .  
 

 

 

      

 

 

 

 

 

 

  

 

 

                           TABLE 13  

       

The inequality 2)1(2 TT    results from equations (3.59) and (3.60). Hence the elongation of 

the Earth’s sidereal day  with respect to the time measured by an atomic clock is only 

apparent (see Table 13). In reality the time measured by the clock  is shorter with respect to 

the time determined by the Earth’s rotation which angular speed varies slightly not only due 

to the movement of masses such as water, snow and lava but also due to the fact that the 

Earth’s speed on its orbit constantly changes.  

 

 

 

 

 

 

 

 

   
00

/ CV  
  

T
R        )61.3(    

Trg
R       )62.3(  

          s             s  

          
410       310646.0            236.0  

 
410244.1                310          365.0   

     
4105.1        310454.1            532.0  

      
4102        310584.2            946.0  

      
4105       310155.16            917.5  
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III.5       DETERMINING THE ABSOLUTE VELOCITIES OF THE EARTH      
             AND THE SUN WITH ATOMIC CLOCKS    

There are two methods for determining the absolute velocities of the Earth and the Sun. Both 

of them involve the use of atomic clocks. 

 

METHOD I: 
In which the difference in times that have been measured by two identical atomic clocks 

pa
ZAZA ,

 
is exploited. 

Assumptions: 1) Clock 
a

ZA  is situated along any given Earth’s parallel. 

                    2) Clock  
p

ZA  is situated at the South Pole. 

Clock’s velocity 
0

V


 on Earth’s surface with respect to the aether is the sum of three vectors: 

(3.63)               
sezsra

VVVV



0

    relationships (2.1), (2.2). 

Vector 
ra

V


 is the velocity of the 
a

ZA  clock on the plane of Earth’s parallel. 

The Earth’s center travels with respect to the aether with velocity: 

(3.64)        
sezsze

VVV


       so 

(3.65)        
zera

VVV



0       

 

(3.66)        22

sezsze
VVV 

 
 

In the coordinate system OX2Y2Z2  (Fig. 16) vector 
ze

V


 is located on the  Y2Z2  plane. The 

Earth’s parallel with clock 
a

ZA coincides with the  X2Y2 plane. Thus vector 
ra

V


 is located on 

the plane  X2Y2 .           

                                                     

 

 

 

 

 

 

 

                                                       

     

 

       

  

                    

 

 

Fig.16  The position of vector 
ra

V


  with respect to 
ze

V


 vector .    

  

   SYMBOLS: 

        an angle between vector  
ze

V


 and the Earth’s parallel (plane X2Y2), 

 
        an angle between  OX2    axis  and  vector 

ra
V


 ,    

   
V

     an angle between  vectors  
ra

V


  and  
ze

V


 ,            
V

 ∡( ),
zera

VV

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The direction of vector  
ra

V


 varies as a result of  changes in the values of angle  22   .  

 

Clocks are synchronized at the time when vector  
ra

V


 is perpendicular to vector  
ze

V


  i.e. 

0  (Fig. 16).  On the clocks’ synchronization day the UT needs to be  determined when the 

vectors   
ra

V


 and 
ze

V


 become perpendicular to each other. 

The angles in Fig. 17  follow the equation: 

                       )(3600  
RsZAa

GHA  

Vector ,
raV


  is perpendicular to both vector ,
zsV


 and  ,
zeV


  when angle 0180
ZAa

  ,  

thus                 )(360180 00  
Rs

GHA   .   Hence   

(3.67)                
Rs

GHA 0180  

If the expression  
R

0180   takes a negative value then 
s

GHA : 

(3.68)                 RsGHA 00 180360  

(3.69)                
zssR

    ,     where: 

3.69a)    ]cos)90([ 0   tgarctgs   ,            090zs  ( 0270 ),          relationship (2.7) 

the right ascensions after spring equinox, or    

(3.69b)   ]cos)90([180 00   tgarctgs ,       090zs ,                      relationship (2.10). 

the right ascensions before autumn equinox. 

      

True anomaly     can be obtained from relationship (2.20) or (2.21) adopting for calculations 

the time UT of the equinox. 

We can determine  the UT of the clocks  synchronization time synT   only on the day of the 

equinox (spring or autumn), because at that time the projection ,
zeV


  of vector zeV


 on the 

equator’s plane is  the same as the projection ,
zsV


 of vector zsV


  (Fig. 17).   

Knowing the synchronization day and the value of the sGHA  angle obtained from relationships 

(3.67) or (3.68), the UT of clocks synchronization time  can be found in  The Nautical 

Almanac. 

 

 

The coordinates of vectors 
ra

V


 and  
ze

V


  in the  OX2Y2Z2  system (Fig.16) are as follows: 

              cos[
rara

VV 


,       sin
ra

V  ,               0       ] 

              0[
ze

V


 ,                cos
ze

V  ,          sin
ze

V ] 

Scalar product of vectors  
ra

V


 and 
ze

V


  implies: 

              


 sincos
sincos

cos 






zera

raze

zera

zera
V

VV

VV

VV

VV


 .    Therefore          

(3.70)       sincoscos V      

The absolute speed  
ra

V
0

 of the clock located on a parallel can be obtained from the following 

expression: 

                
VzerarazeVraVrazera

VVVVVVVV  cos2)sin()cos( 22222

0
 .   

Applying  (3.70)  we have: 

(3.71)       sincos2222
0  zerarazera VVVVV        

 
 

The absolute speed  
p

V
0

  of the clock located at the South Pole: 

(3.72)         
zep

VV 
0  

synT
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                           Fig. 17   Angles in the equatorial coordinate system.  

 

SYMBOLS:  

     N
P        the North Pole,                 ,

ra
V


     projection of vector 
ra

V


 on the equator’s plane, 

1     equator,                           ,

zs
V


     projection of vector 
zs

V


on the equator’s plane,  

2     parallel (of altitude),         ,
zeV


     projection of vector zeV


on the equator’s plane, 

G        Greenwich,                              the longitude of clock’s position, 

S        the Sun,                           
R

      the   angle in equatorial system (Fig. 7), 

          atomic clock,                 
s

GHA      Greenwich Hour Angle of the Sun,    

                                                  
zs

GHA      Greenwich Hour Angle of the 
zs

V


vector. 

 

 Relationship (3.49) determines the times measured by the clocks in systems 1 and 2 

                                1
2

00
4/12

0012 ])/(
4

1
1[])/(1[   CVCV  

    
                                 

The time measured by the
a

ZA clock                         The time measured by the 
p

ZA clock  

at a selected point on the parallel:                            at the North Pole: 

       1
2

002 ])/(
4

1
1[   CV rara                              1

2
002 ])/(

4

1
1[   CV pp       

The difference in times measured by the clocks       1
2

0
2

02
0

22 )(
4

1
  prarappa VV

C
R       

which, after applying relationships (3.71) and (3.72), takes the following form:      

                                                                            1
2

2
0

]sincos2[
4

1
  rarapa VV

C
R                 

 The value of the   angle varies, hence very small values of time increments 
1
  should be 

considered.   

As a result:               )(]sincos2[
4

1
1

2

2
0

  dVVV
C

dR zerarapa ,        
22

 
 
 .                          

Earth’s sidereal day   sTT 091.861642    ,     
TT




22

2
2

  .       So     
2

2



 

T
.    

According to (3.51)    
24/12

00

2

1 ])/(1[



 






CV
 , since  the value 

00
/ CV  is very small.                  

     

a
ZA
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We now have the following equation: )()]
2

sin(cos2[
4

1
22

2

2
0




 d
T

VVV
C

dR zerarapa .                     

The difference in times that have been measured  by the clocks during a sidereal half-a-day  

which commenced at the time of their synchronization:                

     ])()
2

sin(cos2)([
4

1
22

2/

0

2/

0

2
2

2
0

)2/( 


   d
T

VVdV
C

R
T

zera

T

raTpa     and after integration 

(3.73)     cos
28 2

0
2
0

2

)2/( ze
rara

Tpa V
C

TV

C

TV
R


  

The difference in times that have been measured  by the clocks during one sidereal day 

which commenced at the time of their synchronization: 

             )]()
2

sin(cos2)([
4

1

22
00

2

2

2

0

)(



   d

T
VVdV

C
R

T

ze

T

raraTpa
 .     After integration 

(3.74)     T
C

V
R ra

Tpa 2

0

2

)( 4
  

Half-a-day fluctuations of difference in times that have been measured  by atomic clocks are 

observed. 

After equation (3.73) has been transformed and relationship (3.66) introduced the following 

equation appears: 

(3.75)       cos
4

2
22)2/(

2
0

sezs
ra

ra

Tpa
VV

V

TV

RC 
           

Now the value of cos  that appears in equation (3.75) needs to be determined. It can be done 

by following this procedure: 

Vector 
ze

V


 is the sum of two  vectors perpendicular to each other: 

                                     
sezsze

VVV


     relationship (3.64). 

Vector 
zs

V


  is situated on the plane of the ecliptic (Fig.6).  

Vectors 
se

V


  and  
se

V


   are both perpendicular to the plane of the ecliptic  (Fig. 8). 

In the  OX1Y1Z1 system, the coordinates of vector  
ze

V


 are (Fig. 6): 

(3.76)     cos[
zsze

VV 


,         sin
zs

V ,         ]seV  ,                                  where: 

(3.77)                     
2

0180                   when       
0

01800    

(3.78)                     
2

0180                   when       0

0

0 180180    

(3.79)                     
3

                           when       00 360180  ,         where: 

            
3

      relationship  (2.4),              
0

      relationship  (2.6),  

            
2

      relationship  (2.5),                     true anomaly. 

Let  W


be a unit vector situated along the Earth’s axis and pointing north. This vector is 

therefore  perpendicular to the plane of the parallel. 

The coordinates of vector  W


 in system  OX1Y1Z1  are (Fig. 6): 

            ])90sin(,)sin()90cos(,)cos()90cos([ 0
1

0
1

0  W


 . After reduction 

(3.80)   ]cos,sinsin,cossin[ 11  W


 ,           where: 

                  the inclination of the ecliptic to the equator, 

            
1

     an angle obtained from equation (2.17), (Fig.6). 
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  Fig. 18a  Position of vector  
sezsze

VVV


              Fig. 18b  Position of vector 
sezsze

VVV


    

 

SYMBOLS: 

1   parallel plane i.e. its projection, 

2   Earth’s axis, 

              W


     a unit vector. 

              
W

     the angle between  vectors  W


 and  
ze

V


,           
W

  ∡ ),( zeVW


  

Scalar product of vectors (3.76) and (3.80) gives:  

                        
ze

ze
W

WV

VW



cos  ,          1W .           This implies that 

                        )cossinsinsincossincos(
1

cos 11  sezszs
ze

W VVV
V

  

which, after transformation and with relationship (3.66) included, makes: 

(3.81)                
22

1 cos)cos(sin
cos

sezs

sezs
W

VV

VV







  

According to Figures 18a and 18b the following expressions can be written respectively: 

                          090
W

  ,           

                          090
W

  .                      Hence 

                           sin)90cos(cos 0 
W

   .    In this way           
W

cossin  .   So 

             )arcsin(cos)cosarcsin(
WW

  .    Hence 

             )](coscos[arcsin)]arcsin(coscos[cos
WW

  .                                                      

Then after applying equation (3.81): 

(3.82)            ]
cos)cos(sin

arcsin[coscos
22

1

sezs

sezs

VV

VV







       

If relationship (3.82) is used in equation (3.75), the following expression appears: 

(3.83)           ]
cos)cos(sin

arcsin[cos
4

2

22

122)2/(
2
0

sezs

sezs

sezs
ra

ra

Tpa

VV

VV
VV

V

TV

RC







  

Now we have two equations for calculating the speed 
se

V of the Sun with respect  to the 

aether: 

(3.84)           ]
cos)cos(sin

arcsin[cos
4

2

22

122)2/(
2
0

sezs

sezs

sezs
ra

ra

Tpa

VV

VV
VV

V

TV

RC







, 

                                           when      
sezsze

VVV


 ,        or 



 70 

(3.85)          ]
cos)cos(sin

arcsin[cos
4

2

22

122)2/(
2
0

sezs

sezs

sezs
ra

ra

Tpa

VV

VV
VV

V

TV

RC







 , 

                                          when         
sezsze

VVV



 
 

Knowing )2/(TpaR  , the absolute speed  
se

V  of the Sun can be calculated from equations (3.84) 

or (3.85) by the method of successive approximations. The )2/(TpaR   is the absolute value of 

the difference in times that have been  measured  by atomic clocks after half a sidereal day 

has elapsed since the time of their synchronization.   

Having calculated 
se

V  , the absolute speed 
ze

V  of the Earth can be obtained as follows: 

                                          22

sezsze
VVV      relationship (3.66),            where:    

                                                          
zs

V      relationship (2.35).    

The speed of clock:   cosRV
ra
      relationship (2.3). 

Cconsequently the speeds are:  seze VV ,  (Table 14) from equations (3.84) & (3.66) or  

                                                                                                 (3.85) & (3.66).  

                                                  
  
 

      TABLE 14. 

 

Table 14 provides the results of calculations of the 
0

/ CV
ze

 and  
0

/ CV
se

 values which 

correspond to the )2/(TpaR   values adopted for calculations.  

The values in no. 6  cannot be accepted for two reasons:  

1. If 0/ CVze   took value given in no. 6, the shifts of interference fringes in the Michelson’s 

interferometer would be  visible (Table 2). 

2. Apparent elongation of the Earth’s sidereal day would take a few milliseconds  (Table 13). 

Given )2/(TpaR  , the value calculated from the experiment, the absolute speed of the Earth’s   

center and the absolute speed  of the Sun’s center can be obtained with the use of method I. 

Given )2/(TpaR ,the direction of the absolute velocity of the Sun’s center ( seV


  or seV


 , Fig. 8) 

can also be determined if we know from which equation ((3.84) or (3.85)) the value   of  

0/ CVse  was  obtained .
  

      

PROGRAM VzeVse was applied for calculations (for results - see Table 14).   

                                                                 

 
No. 

 

     )2/(TpaR  

  For equation   

  (3.84),   seV


  

       )2/(TpaR  

    For equation 

    (3.85),   seV


  

 

  Values obtained from equations:      
   (3.84) & (3.66)  or  (3.85) & (3.66) 

      0/ CVze        0/ CVse  

          s            s           -                                   - 

  1    6100567.1       6104148.1       4100436.1      4103333.0   

  2    6108806.0       6105910.1       4101897.1      4106613.0   

  3    6108305,0        6106421.1        4102440.1       4107546.0    

  4    6106360.0       6108356.1       4104916.1      4101166.1   

  5    6105439.0       6109277.1       4106239.1      4102880.1   

  6    6101196.0       6103520.2       4103014.2     4100780.2   

)2/(TpaR     values adopted for calculations,                                                             

0/ CVze      absolute speed of the Earth’s   center relative to the speed of the light 0C ,                        

0/ CVse      absolute speed  of the Sun’s  center relative to the speed of the light  0C  .  
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METHOD II. 
In which the difference in times that have been measured by two identical atomic clocks 

ba
ZAZA , , that are located along any given Earth’s parallel, is exploited. 

Assumptions: 1)  The distance clock-Earth’s center is identical. 

                    2)   Clock 
a

ZA  is placed in location of    longitude. 

                          Clock 
b

ZA   is placed in location of  0180  longitude. 

The clocks are synchronized at the time when velocity 
ra

V


of the 
a

ZA clock is perpendicular to 

vector 
ze

V


(Fig. 17). Method I discussed above describes  procedures for determining the UT 

of synchronization time.  

The absolute speed  
ra

V
0

of the  ZAa  clock: 

                    sincos2222
0  zerarazera VVVVV          equation (3.71). 

Hence the absolute speed  
rb

V
0

of the 
b

ZA  clock:   

(3.86)           )(sincos2222
0   zerbrbzerb VVVVV     ,             

rarb
VV   

Time measured by the aZA  clock:                                    Time measured by the 
b

ZA  clock: 

         1
2

002 ])/(
4

1
1[   CV rara                                             1

2
002 ])/(

4

1
1[   CV rbrb   

 
                                                                                              

The difference in times measured by the clocks:     1
2

0
2

02
0

22 )(
4

1
  rbrararbba VV

C
R              

After applying equations (3.71) and (3.86):          12
0

])sin(sin[cos
2

1
  zeraba VV

C
R          

If  
1
   are the values of very small time increments, then:      

                                                               )(])sin(sin[cos
2

1
12

0

  dVV
C

dR zeraba .                 

According to relationship (3.51) 
24/12

00

2

1 ])/(1[



 






CV
as the 

00
/ CV value is very small. 

The angles  
2

2



 

T
,        )

2
(

2

2

T

T
 


 . 

Hence      )(}])
2

(
2

[sin)
2

(sin{cos
2

1
2222

0







 d
T

TT
VV

C
dR zeraba   

Difference in times measured by the clocks during a sidereal half-a-day that commenced at 

the  synchronization time: 

       )(}])
2

(
2

[sin)
2

(sin{cos
2

1
222

2/

0
2
0

)2/( 





  d
T

TT
VV

C
R

T

zeraTba . After integration 

(3.87)       cos
2
0

)2/( ze
ra

Tba V
C

TV
R


. 

Difference in times measured  by the clocks  during a sidereal day that commenced at the  

synchronization time: 

        )(}])
2

(
2

[sin)
2

(sin{cos
2

1
222

0
2
0

)( 





  d
T

TT
VV

C
R

T

zeraTba .  After integration 

(3.88)      0)( TbaR      

After equation (3.87) has been transformed and relationships (3.66) and (3.82) implemented: 

         ]
cos)(cossin

[arcsincos
22

122)2/(
2
0

sezs

sezs
sezs

ra

Tba

VV

VV
VV

TV

RC







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That provides two equations for calculating the speed  
se

V of the Sun with respect to the 

aether: 

(3.89)        ]
cos)(cossin

[arcsincos
22

122)2/(
2
0

sezs

sezs
sezs

ra

Tba

VV

VV
VV

TV

RC







 , 

                                when       
sezsze

VVV


  ,      or 

(3.90)       ]
cos)(cossin

[arcsincos
22

122)2/(
2
0

sezs

sezs
sezs

ra

Tba

VV

VV
VV

TV

RC







 , 

                                when        
sezsze

VVV


  

Knowing )2/(TbaR   , the absolute speed 
se

V  of the Sun can be calculated from equations (3.89) 

or (3.90) by the method of successive approximations. The )2/(TbaR   is the absolute value of 

the difference in times that have been measured by the atomic clocks  after half     a sidereal 

day elapsed since the  synchronization time.   

Having 
se

V  , the absolute speed  
ze

V  of the Earth can be obtained as follows: 

                                          22

sezsze
VVV        relationship (3.66),    where:    

                                                          
zs

V        relationship (2.35),     

The speed of the clock :  cosRV
ra
        relationship (2.3). 

Consequently the speeds are: seze VV ,  (Table 15) from equations (3.89) & (3.66) or 

                                                                                               (3.90) & (3.66) 

           

     TABLE 15.                               

Table 15 provides the results of calculations  of the 
0

/ CV
ze

 ,  
0

/ CV
se

 values which 

correspond to the )2/(TbaR   values that were adopted for calculations.The values in no. 6  

cannot be accepted due to reasons described   in method I.  

Given )2/(TbaR , the value calculated from the experiment, the absolute speed of the Earth’s   

center and the absolute speed of the Sun’s center can be obtained with the use of method II. 

Given )2/(TbaR ,  the direction of the absolute velocity of the Sun’s center ( seV


  or seV


 ,    

Fig. 8) can also be determined if we know from which equation ((3.89) or (3.90)) the value of  

0/ CVse   was obtained.   

PROGRAM VzeVse was applied for calculations (for results – see Table 15). 

 

 
No. 

 

     )2/(TbaR  

  For equation   

  (3.89),   seV


  

       )2/(TbaR  

    For equation 

    (3.90),   seV


  

 

  Values obtained from equations:      
   (3.89) & (3.66)  or  (3.90) & (3.66) 

      0/ CVze        0/ CVse  

          s            s           -                                   - 

  1    6100927.2       6108089.2       4100436.1      4103333.0   

  2    6107403.1       6101612.3       4101897.1      4106613.0   

  3    6106401.1        6102615.3        4102440.1      4107546,0   

  4    6102511.1       6106504.3       4104916.1      4101166.1   

  5    6100670.1       6108345.3       4106239.1      4102880.1   

  6    6102183.0       6106832.4       4103014.2      4100780.2   

   )2/(TbaR     values adopted for calculations,  

    0/ CVze     absolute speed of the Earth’s center relative to the speed of the light 0C , 

    0/ CVse     absolute speed  of the Sun’s  center relative to the speed of the light  0C  . 
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III.5.1 CALCULATING ABSOLUTE VELOCITIES OF THE EARTH AND THE SUN 

                                                         (Example) 

Assumptions: 

1) Atomic clock 
a

ZA is located in a place with geographical coordinates:               

'3450o  ,   '4121o     (Tarnobrzeg city, Poland) 

2) Experiment  begins on 23rd September 2011 with the aim to obtain the difference in 

times that have been measured by the atomic clocks.  

First, the synchronization time of atomic clocks  needs to be calculated as follows: 

Year 2010. Astronomical winter starts on 21st December 5.3823 mh  of the UT. 

Year 2011. Astronomical spring starts on 20th March, 7.2023 mh  of the UT. 

From that it can be inferred that the duration of astronomical winter in 2010-2011: 

          daysT mhd
z 9876388.882.422388  .  Precession in longitude during astronomical  

 winter (2.16) is:               radTTp rzz
5'' 109404049.5292.50)/(  .                                                                           

From equation (2.17)  i.e.:  )2()109404049.52/(9876388.88 11
5    tt   the value of the 

angle 
1

  (Fig. 6) can be calculated by the method of successive approximations:  

                                              1501154.132295109.0 0
1  rad                                             

From relationship (2.18)  we have:  daystTa 9054648.12)( 1   .                 

The period of time that elapsed  from the start of astronomical winter of 2010 until the end of 

the calendar year:                    daysT md
b 0149305.95.219  .                                               

Difference of the two times:      daysTT ba 8905379.3 . 

Autumn equinox: 23rd September,  6.49 mh  UT.  

Time  )(
4
t  which elapsed from the start of the calendar year of 2011 until 6.49 mh   o’clock 

UT on 23rd September 2011 is  dayst mhd 3781944.2656.49265)(4  .   Given the inequality 

oo 360180   and the equation (2.21), in which 8905379.3)(3781944.265  tTrg  ,  the value 

of true anomaly can be calculated by the method of successive approximations: 

                                              8621.255465626.4 0 rad . 

From equation (2.10) we have:  0678643.890 . 

From equation (3.69b):    1448396.179]cos)90([180 000   tgarctgs  ,            090zs                                                                                                                                          

From equation (3.69):      1448396.890 zssR                

From equation (3.67):      1718271.69180 00  RsGHA            )6833333.21'4121( 00  . 

According to The Nautical Almanac, the time that corresponds with that sGHA angle is:

smh 52916 UT. 

The UT of clocks synchronization time:  smh
synT 52916 UT. 

Thus the clocks  need  to be synchronized at smh 52916  of UT on 23rd September.    

Then after half a sidereal day has elapsed since the synchronization time of the clocks i.e. at
smh 7274  of UT on 24th September, the difference in times that had been measured by the 

atomic clocks has to be taken and used in calculations. 

PROGRAM VzeVse, detailed in this work, was used to calculate the absolute speed values of 

the Earth and the Sun. After the values )2/(TpaR   or  )2/(TbaR   were applied to the program 

together with the value of true anomaly 8621.2550  , the absolute speed values of the Earth 

and the Sun were obtained (see method I and  method II).    

  

The results for values of )2/(TpaR , )2/(TbaR  are presented in tables 14 and 15.  
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           CHAPTER  IV 
 

          PROGRAMS 

                    

 

IV.1       PROGRAM: abIM  

 

The following symbols were adopted and used in the program: 

 

           Vw 
oo

CV / ,      ew1  005 /)( eea    ,    ew2  005 /)( eeb    ,     L0   

                           g        thickness of the semi-transparent PP plate,  

                          g1       angle 
1
 ,   

                          g2       angle 
2

 , 

                          ap       adopted value of angle a,                                 

                           a        angle ,                    

                           b        angle  ,                             

                           h        increment of  ,   angles, 

                           F        angle  ,  

                          de        a very small positive number used for calculations. 

 Angles given in radian measure. 

 

In  PROGRAM abIM   the following values were used:       

                          ap = 0.1 rad  ,           h = rad1410 ,        de = 710 .  

Shifts of interference fringes are determined with respect to point Mo with a coordinate 

                          0e 0.1508323849500 m . 

 

After introducing the values of F, Vw variables into the program, the calculations end when 

the conditions of the approximations of points 55 , BA  to point 0M  are satisfied: 

                   ew1 ≤ de   and   ew2 ≤ de .   

Then      │ew1│=│(  / │        and      │ew2│=│(  / │     

  

Following values were used in calculations:  

1)  Basic dimensions of the Michelson’s  interferometer. 

               mLL 2.131  ,         mL 14.03  ,             

               mL 2.12  ,                  mL 10.04  ,  

mg 31025.1   (thickness of PP plate). 

2) The wavelength of  light in a vacuum   mo
7109.5  . 

3) The PP plate refractive index with respect to a vacuum  52.12 n . 

   

 

Programs are written in TURBO PASCAL 7. 

 

 

 

 

 

 

 

 

 
 

 

 
o





)05 eea  0
710 )05 eeb  0

710
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       PROGRAM abIM;                   

                          Var 

                  a, ap, b,Vw,  h, de, ew, ew1, ew2,  Rw, g1, g2, g11, g22,  

                  a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, 

                  xa1, xa2, xa3, xa4, xa5, xa21, xa31, xa41, xa51, 

                  xb1, xb2, xb3, xb4, xb5, xb21, xb31, xb41, xb51, 

                  ya1, ya2, ya3, ya4, ya5, ya21, ya31, ya41, ya51, 

                  yb1, yb2, yb3, yb4, yb5, yb21, yb31, yb41, yb51, 

                  xya1, xya31, xya4, xya41, 

                  xyb1, xyb2, xyb4, xyb21, xyb41, 

                  r21, r22, r221, r23, r31, r32, r321, r33, 

                  r41, r411, r42, r421, r43, r51, r52, r521, r53, 

                  s21, s211, s22, s221, s23, s31, s32, s321, s33, 

                  s41, s411, s42, s421, s43, s51, s52, s521, s53, 

                  ea1, ea2, ea3, ea4, ea5, eb1, eb2, eb3, eb4, eb5, 

                  qa1, qa2, qa3, qa4, qa5, qb1, qb2, qb3, qb4, qb5, 

                  a1u, a2u, a3u, a4u, a5u, b1u, b2u, b3u, b4u, b5u: real; 

 

                            Const 

                   L1=0.14+1.2;    L2=1.2;   L3=0.14;   L4=0.1;   L0=5.9E-7;    g=1.25E-3;  

                   Pi=3.14159265358;  ap=0.1;  de=1e-7;  h=1e-14; e0=0.15083238495; 

                   

    BEGIN    write(‘ap=’);             read(ap);                              

             write(‘F=’);               read(F); 

  write(‘Vw=’);            read(Vw);  

               

                                    a:=ap;      ew1:=0; 

    

    REPEAT                  a:=a-(ABS(ew1)/de)*h; 

                       

                                     g11:=sin(Pi/4-a)/n2; 

                                      g1:=arctan(g11/sqrt(1-g11*g11)); 

                                     

                  a1:=L3/(cos(a)-sin(a)-Vw*(cos(F)-sin(F))); 

                                                       xya1:=L3+a1*Vw*(cos(F)-sin(F)); 

                 xa1:=xya1*cos(a)/(cos(a)-sin(a)); 

                 ya1:=xya1*sin(a)/(cos(a)-sin(a));  

 

                                   xa21:=(L2-ya1+a1*Vw*sin(F))*sin(a)/cos(a); 

                                   ya21:=L2+a1*Vw*sin(F)-ya1; 

                                                   r21:=Vw*sin(F)*(xa21*sin(a)/cos(a)+ya21); 

                                                 r221:=Vw*sin(F)/cos(a); 

                                                   r22:=1-r221*r221; 

                                                   r23:=r21*r21+r22*(xa21*xa21+ya21*ya21); 

                  a2:=(r21+sqrt(r23))/r22; 

                xa2:=xa1+(L2-ya1+(a1+a2)*Vw*sin(F))*sin(a)/cos(a); 

                ya2:=L2+(a1+a2)*Vw*sin(F); 

 

                            xya31:=L3+ya2+(a1+a2)*Vw*(cos(F)-sin(F)); 

                              xa31:=sin(a)*xya31/(sin(a)+cos(a))+cos(a)*xa2/(sin(a)+cos(a))-xa2; 

                              ya31:=sin(a)*xya31/(sin(a)+cos(a))+cos(a)*xa2/(sin(a)+cos(a))+ 

                                       -L3-(a1+a2)*Vw*(cos(F)-sin(F))-ya2; 

                                r31:=(xa31*sin(a)-ya31*cos(a))*Vw*(cos(F)-sin(F))/(sin(a)+cos(a)); 

                              r321:=Vw*(cos(F)-sin(F))/(sin(a)+cos(a)); 

                                 r32:=1-r321*r321;   

                                 r33:=r31*r31+r32*(xa31*xa31+ya31*ya31); 



 76 

                   a3:=(r31+sqrt(r33))/r32; 

                  xa3:=(sin(a)/(sin(a)+cos(a)))*(L3+ya2+(a1+a2+a3)*Vw*(cos(F)-sin(F)))+ 

                          +cos(a)*xa2/(sin(a)+cos(a));  

                  ya3:=(sin(a)/(sin(a)+cos(a)))*xya31+cos(a)*xa2/(sin(a)+cos(a))+ 

                          -L3-(a1+a2)*Vw*(cos(F)-sin(F))+ 

                          -(cos(a)/(sin(a)+cos(a)))*a3*Vw*(cos(F)-sin(F));  

 

                                         xya41:=L3+sqrt(2)*g+(a1+a2+a3)*Vw*(cos(F)-sin(F))+ 

                                                   +sin(Pi/4+g1)*xa3/cos(Pi/4+g1)+ya3;  

                                    xa41:=(cos(Pi/4+g1)/(sin(Pi/4+g1)+cos(Pi/4+g1)))*xya41-xa3; 

                                    ya41:=-(sin(Pi/4+g1)/(sin(Pi/4+g1)+cos(Pi/4+g1)))*xya41+ 

                                              +sin(Pi/4+g1)*xa3/cos(Pi/4+g1); 

                                r411:=xa41*cos(Pi/4+g1)-ya41*sin(Pi/4+g1); 

                                  r41:=r411*n2*Vw*(cos(F)-sin(F))/(sin(Pi/4+g1)+cos(Pi/4+g1)); 

                                r421:=n2*Vw*(cos(F)-sin(F))/(sin(Pi/4+g1)+cos(Pi/4+g1)); 

                                  r42:=1-r421*r421; 

                                  r43:=r41*r41+r42*(xa41*xa41+ya41*ya41); 

                    a4:=(r41+sqrt(r43))/r42; 

                              xya4:=L3+sqrt(2)*g+(a1+a2+a3+n2*a4)*Vw*(cos(F)-sin(F))+ 

                                        +sin(Pi/4+g1)*xa3/cos(Pi/4+g1)+ya3; 

                  xa4:=cos(Pi/4+g1)*xya4/(sin(Pi/4+g1)+cos(Pi/4+g1)); 

                  ya4:=-sin(Pi/4+g1)*xya4/(sin(Pi/4+g1)+cos(Pi/4+g1))+ 

                          +ya3+sin(Pi/4+g1)*xa3/cos(Pi/4+g1);  

 

                                xa51:=(L4-(a1+a2+a3+n2*a4)*Vw*sin(F)+ya4)*sin(a)/cos(a); 

                                ya51:=-L4+(a1+a2+a3+n2*a4)*Vw*sin(F)-ya4; 

                                     r51:=(ya51-xa51*sin(a)/cos(a))*Vw*sin(F); 

                                   r521:=Vw*sin(F)/cos(a); 

                                     r52:=1-r521*r521; 

                                     r53:=r51*r51+r52*(xa51*xa51+ya51*ya51); 

                     a5:=(r51+sqrt(r53))/r52; 

                   xa5:=(L4-(a1+a2+a3+n2*a4+a5)*Vw*sin(F)+ya4)*sin(a)/cos(a)+xa4; 

                   ya5:=-L4+(a1+a2+a3+n2*a4+a5)*Vw*sin(F); 

                                    ea5:=xa5-(a1+a2+a3+n2*a4+a5)*Vw*cos(F); 

                              

                                    ew1:=(ea5-e0)/L0; 

                    if  a<-0.4   then   ew1:=de; 

 

UNTIL  ew1<=de; 

 

                                    b:=ap;     ew2:=0; 

 

REPEAT  b:=b-(ABS(ew2)/de)*h;    

 

                                    g22:=sin(Pi/4+b)/n2; 

                                     g2:=arctan(g22/sqrt(1-g22*g22));  

 

                     b1:=L3/(cos(b)-sin(b)-Vw*(cos(F)-sin(F))); 

                                                       xyb1:=L3+b1*Vw*(cos(F)-sin(F)); 

                   xb1:=xyb1*cos(b)/(cos(b)-sin(b)); 

                   yb1:=xyb1*sin(b)/(cos(b)-sin(b)); 

 

                                             xyb21:=L3+sqrt(2)*g+b1*Vw*(cos(F)-sin(F))+yb1+ 

                                                        +sin(Pi/4-g2)*xb1/cos(Pi/4-g2); 

                               xb21:=cos(Pi/4-g2)*xyb21/(sin(Pi/4-g2)+cos(Pi/4-g2))-xb1; 

                               yb21:=-sin(Pi/4-g2)*xyb21/(sin(Pi/4-g2)+cos(Pi/4-g2))+ 
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                                         +sin(Pi/4-g2)*xb1/cos(Pi/4-g2); 

                               s211:=xb21*cos(Pi/4-g2)-yb21*sin(Pi/4-g2); 

                                s21:=s211*n2*Vw*(cos(F)-sin(F))/(sin(Pi/4-g2)+cos(Pi/4-g2)); 

                              s221:=n2*Vw*(cos(F)-sin(F))/(sin(Pi/4-g2)+cos(Pi/4-g2)); 

                               s22:=1-s221*s221; 

                                 s23:=s21*s21+s22*(xb21*xb21+yb21*yb21); 

                    b2:=(s21+sqrt(s23))/s22; 

                                xyb2:=L3+sqrt(2)*g+(b1+n2*b2)*Vw*(cos(F)-sin(F))+yb1+ 

                                         +sin(Pi/4-g2)*xb1/cos(Pi/4-g2); 

                   xb2:= cos(Pi/4-g2)*xyb2/(sin(Pi/4-g2)+cos(Pi/4-g2)); 

                   yb2:=-sin(Pi/4-g2)*xyb2/(sin(Pi/4-g2)+cos(Pi/4-g2))+yb1+ 

                           +sin(Pi/4-g2)*xb1/cos(Pi/4-g2); 

                            xb31:=L1+(b1+n2*b2))*Vw*cos(F)-xb2; 

                            yb31:=(L1+(b1+n2*b2)*Vw*cos(F))*sin(b)/cos(b)-sin(b)*xb2/cos(b); 

                                     s31:=(xb31+yb31*sin(b)/cos(b))*Vw*cos(F); 

                                   s321:=Vw*cos(F)/cos(b); 

                                     s32:=1-s321*s321; 

                                     s33:= s31*s31+s32*(xb31*xb31+yb31*yb31); 

                b3:=(s31+sqrt(s33))/s32; 

              xb3:=L1+(b1+n2*b2+b3)*Vw*cos(F); 

              yb3:=(sin(b)/cos(b))*(L1+(b1+n2*b2+b3)*Vw*cos(F))+yb2-sin(b)*xb2/cos(b); 

                            

                                   xyb41:=L3+sqrt(2)*g+(b1+n2*b2+b3)*Vw*(cos(F)-sin(F))+yb3+ 

                                              +sin(b)*xb3/cos(b); 

                                    xb41:= (cos(b)/(sin(b)+cos(b)))*xyb41-xb3; 

                                    yb41:=-(sin(b)/(sin(b)+cos(b)))*xyb41+sin(b)*xb3/cos(b); 

                                   s 411:=xb41*cos(b)-yb41*sin(b); 

                                      s41:=s411*Vw*(cos(F)-sin(F))/(sin(b)+cos(b)); 

                                    s421:=Vw*(cos(F)-sin(F))/(sin(b)+cos(b)); 

                                      s42:=1-s421*s421;                          

                                      s43:=s41*s41+s42*(xb41*xb41+yb41*yb41); 

         b4:=(s41+sqrt(s43))/s42; 

                  xyb4:=L3+sqrt(2)*g+(b1+n2*b2+b3+b4)*Vw*(cos(F)-sin(F))+yb3+ 

                            +sin(b)*xb3/cos(b); 

       xb4:= cos(b)*xyb4/(sin(b)+cos(b)); 

       yb4:=-sin(b)*xyb4/(sin(b)+cos(b))+yb3+sin(b)*xb3/cos(b); 

 

                   xb51:=(L4-(b1+n2*b2+b3+b4)*Vw*sin(F)+yb4)*sin(b)/cos(b); 

                   yb51:=-L4+(b1+n2*b2+b3+b4)*Vw*sin(F)-yb4; 

                                     s51:=(yb51-xb51*sin(b)/cos(b))*Vw*sin(F); 

                                   s521:=Vw*sin(F)/cos(b); 

                                     s52:=1-s521*s521; 

                                     s53:=s51*s51+s52*(xb51*xb51+yb51*yb51); 

         b5:=(s51+sqrt(s53))/s52; 

       xb5:=(L4-(b1+n2*b2+b3+b4+b5)*Vw*sin(F)+yb4)*(sin(b)/cos(b))+xb4; 

       yb5:=-L4+(b1+n2*b2+b3+b4+b5)*Vw*sin(F); 

 

                        eb5:=xb5-(b1+n2*b2+b3+b4+b5)*Vw*cos(F); 

                                      ew2:=(eb5-e0)/L0; 

 

                      if   a< -0.4   then   ew2:=de; 

 

  UNTIL  ew2<=de; 

                              ea1:=xa1-a1*Vw*cos(F); 

                              qa1:=ya1-a1*Vw*sin(F); 

                                       ea2:=xa2-(a1+a2)*Vw*cos(F); 
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                                         qa2:=ya2-(a1+a2)*Vw*sin(F); 

                              ea3:=xa3-(a1+a2+a3)*Vw*cos(F); 

                              qa3:=ya3-(a1+a2+a3)*Vw*sin(F); 

                                                             ea4:=xa4-(a1+a2+a3+n2*a4)*Vw*cos(F); 

                                                      qa4:=ya4-(a1+a2+a3+n2*a4)*Vw*sin(F);  qa5:= -L4                                

                                                              eb1:=xb1-b1*Vw*cos(F); 

                                                              qb1:=yb1-b1*Vw*sin(F); 

                              eb2:=xb2-(b1+n2*b2)*Vw*cos(F); 

                              qb2:=yb2-(b1+n2*b2)*Vw*sin(F); 

                                                              eb3:=xb3-(b1+n2*b2+b3)*Vw*cos(F); 

                                                              qb3:=yb3-(b1+n2*b2+b3)*Vw*sin(F); 

                              eb4:=xb4-(b1+n2*b2+b3+b4)*Vw*cos(F); 

                              qb4:=yb4-(b1+n2*b2+b3+b4)*Vw*sin(F);    qb5:= -L4; 

                  a1u:=sqrt(ea1*ea1+qa1*qa1); 

                  a2u:=sqrt((ea2-ea1)*(ea2-ea1)+(qa2-qa1)*(qa2-qa1)); 

                  a3u:=sqrt((ea3-ea2)*(ea3-ea2)+(qa3-qa2)*(qa3-qa2)); 

                  a4u:=sqrt((ea4-ea3)*(ea4-ea3)+(qa4-qa3)*(qa4-qa3)); 

                  a5u:=sqrt((ea5-ea4)*(ea5-ea4)+(qa5-qa4)*(qa5-qa4)); 

 

                                      b1u:=sqrt(eb1*eb1+qb1*qb1); 

                                      b2u:=sqrt((eb2-eb1)*(eb2-eb1)+(qb2-qb1)*(qb2-qb1)); 

                                      b3u:=sqrt((eb3-eb2)*(eb3-eb2)+(qb3-qb2)*(qb3-qb2)); 

                                      b4u:=sqrt((eb4-eb3)*(eb4-eb3)+(qb4-qb3)*(qb4-qb3)); 

                                      b5u:=sqrt((eb5-eb4)*(eb5-eb4)+(qb5-qb4)*(qb5-qb4));  

 

                     Rw:=(a1u+a2u+a3u+n2*a4u+a5u-b1u-n2*b2u-b3u-b4u-5u)/L0;  

 

                         write(‘a=’,a);                                           writeln; 

                         write(‘b=’,b);                                           writeln; 

                                          write(‘ea5=’,ea5);                   writeln; 

                                          write(‘eb5=’,eb5);                   writeln; 

                                          write(‘ew1=’,ew1);                  writeln;  

                                          write(‘ew2=’,ew2);                  writeln 

                         write(‘Rw=’,Rw);                                      writeln;   

                         write(‘frac(Rw)=’,frac(Rw));                      writeln;writeln;   

     END. 

 

Program abIM is designed to calculate pairs of angles  and the relative difference   

of distances travelled by the rays of light..      

 

  

 

 

IV.2    PROGRAM  IntM; 

                                  Var 

                             PROGRAM abIM 

  

                                  Const               

                             PROGRAM abIM 

                           

                BEGIN        write(‘a=’);                           read(a); 

                                 write(‘b=’);                            read(b); 

                                 write(‘F=’);                            read(F); 

                                 write(‘Vw=’);                         read(Vw);                 
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                              g11:=sin(Pi/4-a)/n2; 

                               g1:=arctan(g11/sqrt(1-g11*g11));  

                       

 

                               PROGRAM abIM 

 

 

                        

                   xa5:=(L4-(a1+a2+a3+n2*a4+a5)*Vw*sin(F)+ya4)*sin(a)/cos(a)+xa4; 

                   ya5:=-L4+(a1+a2+a3+n2*a4+a5)*Vw*sin(F); 

                                    ea5:=xa5-(a1+a2+a3+n2*a4+a5)*Vw*cos(F); 

 

                                    g22:=sin(Pi/4+b)/n2; 

                                     g2:=arctan(g22/sqrt(1-g22*g22));  

 

                     b1:=L3/(cos(b)-sin(b)-Vw*(cos(F)-sin(F)));                              

      

  

                                PROGRAM abIM 

 

 

          

                xb5:=(L4-(b1+n2*b2+b3+b4+b5)*Vw*sin(F)+yb4)*(sin(b)/cos(b))+xb4; 

                yb5:=-L4+(b1+n2*b2+b3+b4+b5)*Vw*sin(F); 

 

                        eb5:=xb5-(b1+n2*b2+b3+b4+b5)*Vw*cos(F); 

 

                                          ea1:=xa1-a1*Vw*cos(F); 

                                          qa1:=ya1-a1*Vw*sin(F);   

               

  

                                PROGRAM abIM 

 

 

                                              

         

                Rrw:=(a1u+a2u+a3u+n2*a4u+a5u-b1u-n2*b2u-b3u-b4u-b5u)/L0; 

                        

                      ew:=ABS(ea5-eb5)/L0; 

                       

                                write(‘ea5=’,ea5);                  writeln;  

                                write(‘eb5=’,eb5);                  writeln; 

                                write(‘ew=’,ew);                    writeln; 

                                write(‘Rrw=’,Rrw);                 writeln;writeln;  

               END.                    

 

 PROGRAM IntM is designed to calculate the following (Table 8): 

1) The coordinates 
55

,
ba

ee   of non-approximated points
55

, BA . 

2) Relative distance |
55 ba

ee  |/
o

  of points 
55

, BA . 

3) Relative difference 
rw

R  of distances travelled by the light rays reaching 

mutually distant points
55

, BA  of the screen M.   
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IV.3       PROGRAM: abIn  

 

The following symbols were adopted and used in the program: 

 

           Vw ,      qw1 = 003 /)( qqa     ,    qw2 = 003 /)( qqb     ,     L0 ,  

                           g        thickness of the semi-transparent PP plate,                              

                          g2       angle , 

                          ap       adopted value of angle a,                                 

                           a        angle ,                    

                           b        angle ,                             

                           h        increment of ,  angles, 

                           F        angle ,  

                          de        a very small positive number used for calculations. 

 Angles given in radian measure. 

 

In  PROGRAM abIn   the following values were used:       

                          ap = 0.2  ,       h = ,      de = .   410244.1 wV .  

Shifts of interference fringes are determined with respect to point Mo with a coordinate                            

                                 mq 0314.00  . 

After introducing the value of F variable into the program, the calculations end when the 

conditions of the approximations of points 33 , BA  to point 0M  are satisfied: 

                   qw1 ≤ de   and   qw2 ≤ de .   

Then          │qw1│=│ 003 /)( qqa  │ 710      and      │qw2│=│ 003 /)( qqb  │ 710    

  

Following values were used in calculations:  

1)  Basic dimensions of the interferometer-Fig.Sd1: 

                mLL 2.131  ,      mL 8.02   ,         mL 14.03  ,              

                mez 15.0 , 

                      025z                       inclination of the mirror Z  to the arm 1L  ,    

 mg 31025.1       thickness of PP plate, 

2) The wavelength of  light in a vacuum   , 

3) The PP plate refractive index with respect to a vacuum  . 

 

Programs are written in TURBO PASCAL 7. 
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            PROGRAM abIn;                   

                          Var 

                  a, ap, b,Vw,  h, de, ew, ew1,ew2,  Rw,  g2, g22,  

                  a1, a2, a3,  b1, b2, b3, a21, a22, a31, a32, 

                  xa1, xa2, xa3,  xa21, xa31, xb1, xb2, xb3,  xb21, xb31,   

                  ya1, ya2, ya3,  ya21, ya31, yb1, yb2, yb3,  yb21, yb31,  

                  xya1, xya31, xyb1, xyb2,  

                  r21, r22, r221, r23, r31, r32, r321, r33,                  

                  s21, s211, s22, s221, s23, s31, s32, s321, s33,                   

                  ea1, ea2, ea3,  eb1, eb2, eb3,   qa1, qa2, qa3, qb1, qb2, qb3,                  

                  a1u, a2u, a3u,  b1u, b2u, b3u : real; 

 

                            Const 

                   L1=0.14+1.2;    L2=0.8;   L3=0.14;   L0=5.9E-7;   g=1.25E-3;  

                   q0=0,0314;    az=0,436332313; ez=0,15;   

                   Pi=3.14159265358;   ap=0,2;   h=1E-14; de=1E-7;                     

BEGIN                                 

             write(‘F=’);               read(F);                

                  

REPEAT                      a:=ap;      qw1:=0;    

                  a:=a-(ABS(qw1)/de)*h;                                                                            

                         a1:=L3/(cos(a)-sin(a)-Vw*(cos(F)-sin(F))); 

                                   xya1:=L3+a1*Vw*(cos(F)-sin(F)); 

                     xa1:=xya1*cos(a)/(cos(a)-sin(a)); 

                   ya1:=xya1*sin(a)/(cos(a)-sin(a));  

         a21:=ya1-L2-a1*Vw*sin(F)+sin(az)*(ez-xa1+a1*Vw*cos(F))/cos(az); 

         a22:=sin(az)*(sin(a)-Vw*cos(F))/cos(az)+Vw*sin(F)-cos(A); 

   a2:=a21/a22; 

                    xa2:=xa1+a2*sin(a); 

                    ya2:=cos(a)*(xa2-xa1)/sin(a)+ya1; 

          a31:=cos(2*az+a)*(xa2-L1-(a1+a2)*Vw*cos(F))/sin(2*az+a); 

          a32:=cos(2*az+a)*Vw*cos(F)/sin(2*az+a)-cos(2*az+a); 

   a3:=a31/a32: 

             xa3:=L1+(a1+a2+a3)*Vw*cos(F); 

             ya3:=ya2-a3*cos(2*az+a); 

                                                  qa3:=ya3-(a1+a2+a3)*sin(F);                                                                                                       

                                qw1:=(qa3-q0)/L0; 

                    if  a<1e-6   then   qw1:=de; 

UNTIL  qw1<=de;    

 

                                  b:=ap;     qw2:=0; 

REPEAT  b:=b-(ABS(qw2)/de)*h;    

                             g22:=sin(Pi/4+b)/n2; 

                              g2:=arctan(g22/sqrt(1-g22*g22));  

                     b1:=L3/(cos(b)-sin(b)-Vw*(cos(F)-sin(F))); 

                                       xyb1:=L3+b1*Vw*(cos(F)-sin(F)); 

                        xb1:=xyb1*cos(b)/(cos(b)-sin(b)); 

                        yb1:=xyb1*sin(b)/(cos(b)-sin(b)); 

                      xyb21:=L3+sqrt(2)*g+b1*Vw*(cos(F)-sin(F))+yb1+ 

                                                        +sin(Pi/4-g2)*xb1/cos(Pi/4-g2); 

                      xb21:=cos(Pi/4-g2)*xyb21/(sin(Pi/4-g2)+cos(Pi/4-g2))-xb1; 

                      yb21:=-sin(Pi/4-g2)*xyb21/(sin(Pi/4-g2)+cos(Pi/4-g2))+ 

                                                         +sin(Pi/4-g2)*xb1/cos(Pi/4-g2); 

                             s211:=xb21*cos(Pi/4-g2)-yb21*sin(Pi/4-g2); 

                              s21:=s211*n2*Vw*(cos(F)-sin(F))/(sin(Pi/4-g2)+cos(Pi/4-g2)); 

                             s221:=n2*Vw*(cos(F)-sin(F))/(sin(Pi/4-g2)+cos(Pi/4-g2)); 



 82 

                              s22:=1-s221*s221; 

                                     s23:=s21*s21+s22*(xb21*xb21+yb21*yb21); 

                     b2:=(s21+sqrt(s23))/s22; 

                                 xyb2:=L3+sqrt(2)*g+(b1+n2*b2)*Vw*(cos(F)-sin(F))+yb1+ 

                                                                         +sin(Pi/4-g2)*xb1/cos(Pi/4-g2); 

                   xb2:= cos(Pi/4-g2)*xyb2/(sin(Pi/4-g2)+cos(Pi/4-g2)); 

                   yb2:=-sin(Pi/4-g2)*xyb2/(sin(Pi/4-g2)+cos(Pi/4-g2))+yb1+ 

                                                           +sin(Pi/4-g2)*xb1/cos(Pi/4-g2); 

                             xb31:=L1+(b1+n2*b2))*Vw*cos(F)-xb2; 

                             yb31:=(L1+(b1+n2*b2)*Vw*cos(F))*sin(b)/cos(b)-sin(b)*xb2/cos(b); 

                                     s31:=(xb31+yb31*sin(b)/cos(b))*Vw*cos(F); 

                                    s321:=Vw*cos(F)/cos(b); 

                                     s32:=1-s321*s321; 

                                     s33:= s31*s31+s32*(xb31*xb31+yb31*yb31); 

                  b3:=(s31+sqrt(s33))/s32; 

xb3:=L1+(b1+n2*b2+b3)*Vw*cos(F);                           

yb3:=(sin(b)/cos(b))*(L1+(b1+n2*b2+b3)*Vw*cos(F))+yb2+sin(b)*xb2/cos(b);                           

                        qb3:=yb3-(b1+n2*b2+b3)*Vw*sin(F); 

                                      qw2:=(qb3-q0)/L0; 

                      if   a< 1e-6     then   qw2:=de; 

UNTIL  qw2<=de; 

                              ea1:=xa1-a1*Vw*cos(F); 

                              qa1:=ya1-a1*Vw*sin(F); 

                                         ea2:=xa2-(a1+a2)*Vw*cos(F); 

                                         qa2:=ya2-(a1+a2)*Vw*sin(F); 

                              ea3:=xa3-(a1+a2+a3)*Vw*cos(F); 

                              qa3:=ya3-(a1+a2+a3)*Vw*sin(F); 

                                                              eb1:=xb1-b1*Vw*cos(F); 

                                                              qb1:=yb1-b1*Vw*sin(F); 

                              eb2:=xb2-(b1+n2*b2)*Vw*cos(F); 

                              qb2:=yb2-(b1+n2*b2)*Vw*sin(F); 

                                                              eb3:=xb3-(b1+n2*b2+b3)*Vw*cos(F); 

                                                              qb3:=yb3-(b1+n2*b2+b3)*Vw*sin(F);                               

                  a1u:=sqrt(ea1*ea1+qa1*qa1); 

                  a2u:=sqrt((ea2-ea1)*(ea2-ea1)+(qa2-qa1)*(qa2-qa1)); 

                  a3u:=sqrt((ea3-ea2)*(ea3-ea2)+(qa3-qa2)*(qa3-qa2));              

                                      b1u:=sqrt(eb1*eb1+qb1*qb1); 

                                      b2u:=sqrt((eb2-eb1)*(eb2-eb1)+(qb2-qb1)*(qb2-qb1)); 

                                      b3u:=sqrt((eb3-eb2)*(eb3-eb2)+(qb3-qb2)*(qb3-qb2));                                     

                  Rw:=(a1u+a2u+a3u-b1u-n2*b2u-b3u)/L0;  

 

                         write(‘a=’,a);                            writeln; 

                         write(‘b=’,b);                            writeln; 

                         write(‘qa3=’,qa3);                     writeln; 

                         write(qeb3=’,qb3);                    writeln;                              

                         write(‘Rw=’,Rw);                      writeln;   

                         write(‘frac(Rw)=’,frac(Rw));      writeln; writeln;   

     END.         

 

Program abIn is designed to calculate pairs of angles  and the relative difference   of 

distances travelled by the rays of light (interferometer-Fig.Sd1).        
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IV.4     PROGRAM Vo1Vo2 

 

Symbols used in the program: 

     

                      ALFAs,                            NI  (true anomaly),  

               zs       ALFAzs,                           FI,  

                     ALFAse,                            LAMBDA,                   

               1se       ALFAse1,                  1       ETA1, 

               zs        DELTAzs                   2       ETA2, 

                      DELTAse,                  3      ETA3, 

                     DELTAse1,                 0      ETA0 

                        EPSILON, 

                        PSI,                                                 

                        OMEGA,                                                

                                                         

                                                          

In this program angles were given in degree   measures in decimal system .  

 

Program was written in TURBO PASCAL 7. 

  

       PROGRAM Vo1Vo2; 

             Var 

       b, ETA0, ETA1, ETA2, ETA3, NI, PSI, g3, k1, k2, k11, k22, k33,  

       ALFAs, ALFAzs, ALFAse, ALFAse1, 

       DELTAse, DELTAse1,  DELTAzs, GHAaries, LHAzs, LHAse, LHAse1, 

       Hzs, Hse, Hse1, H01, H02, 

       Azs,  Ase, Ase1, A01, A02, 

       dzs, dse, dse1, 

       zzs, zse, zse1, z01, z02, 

       Vzs, Vse, 

       Vru2, Vzsu1, Vzsu2, Vzsu3, Vseu1, Vseu2, Vseu3, 

       Vse1u1, Vse1u2, Vse1u3, 

       V01u1, V01u2, V01u3, V02u1, V02u2, V02u3, V01, V02,  

       h1, h2, h3, h4, h5, az1, az2, az3, az4, az5 : real; 

 

              Const 

       Pi=3.14159265358;  C0=3E5; 

       a=149597E3;  e=0.01671;  EPSILON=0.4090877; 

       R=6378.1;  OMEGA=7.292115E-5;  Trg=365.256366;   Trz=365.242199; 

       ALFAse=3*Pi/2;   ALFAse1=Pi/2;  DELTAse=Pi/2-EPSILON; 

                                                         DELTAse1= -(Pi/2-EPSILON); 

        BEGIN        write(‘FI=’);                                read(FI); 

                          write(‘LAMBDA=’);                     read(LAMBDA); 

                          write(‘ALFAs=’);                         read(ALFAs); 

                          write(‘GHAaries=’);                     read(GHAaries); 

                          write(‘NI=’);                                read(NI); 

 

                 FI:=FI*Pi/180;    LAMBDA:=LAMBDA*Pi/180; 

                 ALFAs:=ALFAs*Pi/180;   GHAaries:=GHAaries*Pi/180;  NI:=NI*Pi/180; 

                          b:=sqrt(a*a-sqr(e*a)); 

                         g3:=e*(1+e*cos(NI))/(sin(NI)*(1-e*e)); 

                    ETA3:=arctan(-sqr(b/a)*(g3+cos(NI)/sin(NI))); 

                    ETA2:=ABS(ETA3);                            ETA0:=arctan(b/(e*a)); 

s
 



se


se


1se




o...
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                 if  NI>0  then     begin   if NI<=Pi-ETA0     then     PSI:=NI+ETA2;         end;  

                 if  NI>Pi-ETA0  then  begin  if  NI<Pi         then     PSI:=NI-ETA2;          end; 

                 if  NI>Pi  then    begin   if  NI<=Pi+ETA0   then     PSI:=-Pi+NI+ETA2;  end; 

                 if  NI>Pi+ETA0  then  begin   if  NI<2*Pi    then     PSI:=-Pi+NI-ETA2;   end; 

                          

                               k11:=arctan(sin(ALFAs)/(cos(ALFAs)*cos(EPSILON))); 

                  if  ALFAs>1.487E-2 then  begin   if   ALFAs<Pi/2        then   k1:=k11; end; 

                  if  ALFAs>Pi/2     then  begin   if   ALFAs<3*Pi/2 then   k1:=Pi+k11;     end; 

                  if  ALFAs>3*Pi/2  then  begin   if   ALFAs<2*Pi    then   k1:=2*Pi+k11;  end;  

                                       

                                k2:=k1-PSI; 

                               k22:=arctan(sin(k2)*cos(EPSILON)/cos(k2)); 

                  if  k2>-Pi/2     then    begin     if    k2<Pi/2     then   ALFAzs:=k22;        end; 

                  if  k2> Pi/2      then    begin     if    k2<3*Pi/2  then   ALFAzs:=Pi+k22;   end;   

 

                                 k33:=sin(k2)*sin(EPSILON); 

                             DELTAzs:=arctan(k33/sqrt(1-k33*k33)); 

                                 LHAzs:=GHAaries-ALFAzs+LAMBDA; 

                          h1:=cos(DELTAzs)*cos(FI)*cos(LHAzs)+sin(DELTAzs)*sin(FI); 

                   Hzs:=arctan(h1/sqrt(1-h1*h1));               

                                  dzs:=(sin(DELTAzs)-sin(Hzs)*sin(FI))/(cos(Hzs)*cos(FI)); 

                                  zzs:=dzs/ABS(dzs); 

      az1:=cos(DELTAzs)*sin(LHAzs)/cos(Hzs); 

                   Azs;=(Pi/2)*(3+zzs)-zzs*arctan(az1/sqrt(1-az1*az1)); 

                   Vzs:=2*Pi*a*(1+e*cos(NI))/(Trg*24*3600*sqrt(1-e*e)*sin(PSI)); 

 

                                 LHAse:=GHAaries-ALFAse+LAMBDA; 

                           h2:=cos(DELTAse)*cos(FI)*cos(LHAse)+sin(DELTAse)*sin(FI); 

                   Hse:=arctan(h2/sqrt(1-h2*h2);  

 

                                 dse:=(sin(DELTAse)-sin(Hse)*sin(FI))/(cos(Hse)*cos(FI)); 

                                 zse:=dse/ABS(dse); 

                                 az2:=cos(DELTAse)*sin(LHAse)/cos(Hse); 

                    Ase:=(Pi/2)*(3+zse)-zse*arctan(az2/sqrt(1-az2*az2));   

 

                                   LHAse1:=GHAaries-ALFAse1+LAMBDA; 

                            h3:=cos(DELTAse1)*cos(FI)*cos(LHAse1)+sin(DELTAse1)*sin(FI); 

                    Hse1:=arctan(h3/sqrt(1-h3*h3)); 

                                   dse1:=(sin(DELTAse1)-sin(Hse1)*sin(FI))/(cos(Hse1)*cos(FI)); 

                                   zse1:=dse1/ABS(dse1); 

                                     az3:=cos(DELTAse1)*sin(LHAse1)/cos(Hse1); 

                     Ase1:=(Pi/2)*(3+zse1)-zse1*arctan(az3/sqrt(1-az3*az3)); 

 

                                                       Vse:=Co*0.748E-4;                                 

                                                                               Vru2:=OMEGA*R*cos(FI); 

                                    Vzsu1:=Vzs*cos(Hzs)*cos(Azs); 

                                    Vzsu2:=Vzs*cos(Hzs)*sin(Azs); 

                                    Vzsu3:=Vzs*sin(Hzs); 

                                                                               Vseu1:=Vse*cos(Hse)*cos(Ase); 

                                                                               Vseu2:=Vse*cos(Hse)*sin(Ase); 

                                                                               Vseu3:=Vse*sin(Hse); 

                                    Vse1u1:=Vse*cos(Hse1)*cos(Ase1); 

                                    Vse1u2:=Vse*cos(Hse1)*sin(Ase1); 

                                    Vse1u3:=Vse*sin(Hse1);  



 85 

   

                                   V01u1:=Vzsu1+Vseu1; 

                                   V01u2:=Vru2+Vzsu2+Vseu2; 

                                   V01u3:=Vzsu3+Vseu3; 

                     V01:=sqrt(sqr(V01u1)+sqr(V01u2)+sqr(V01u3)); 

                                                                                 h4:=V01u3/V01; 

                     H01:=arctan(h4/sqrt(1-h4*h4)); 

                                                                                z01:=V01u1/ABS(V01u1); 

                                                                                az4:=V01u2/(V01*cos(H01)); 

                     A01:=(Pi/2)*(3+z01)+z01*arctan(az4/sqrt(1-az4*az4)); 

 

                                    V02u1:=Vzsu1+Vse1u1; 

                                    V02u2:=Vru2+Vzsu2+Vse1u2; 

                                    V02u3:=Vzsu3+Vse1u3; 

                     V02:=sqrt(sqr(V02u1)+sqr(V02u2)+sqr(V02u3)): 

                                                                                  h5:=V02u3/V02; 

                     H02:=arctan(h5/sqrt(1-h5*h5)); 

                                                                                 z02:=V02u1/ABS(V02u1); 

                                                                                 az5:=V02u2/(V02*cos(H02)); 

                    A02:=(Pi/2)*(3+z02)+z02*arctan(az5/sqrt(1-az5*az5));  

 

                           H01:=H01*180/Pi;                A01:=A01*180/Pi; 

                           H02:=H02*180/Pi;                A02:=A02*180/Pi; 

                                                                      if    A01>360   then    A01:=A01-360; 

                                                                      if    A02>360   then    A02:=A02-360;  

 

                    write(‘Vzs=’,Vzs);      writeln; 

                    write(‘Hzs=’,Hzs);      writeln; 

                    write(‘Azs=’,Azs);       writeln;writeln; 

                                                                  write(‘Vo=V01=’,V01);    writeln;   

                                                                  write(‘H01=’,H01);          writeln; 

                                                                  write(‘A01=’,A01);          writeln;writeln 

                    write(‘Vo=V02=’,V02);      writeln;  

                    write(‘H02=’,H02);            writeln; 

                    write(‘A02=’,A02);            writeln;writeln; 

 

          END.     

 

 

PROGRAM Vo1Vo2  is designed to calculate the coordinates of velocities ,   (2.1)  and        

  (2.2) in the horizontal system. 
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IV.5      PROGRAM VzeVse  

 
Symbols used in this program: 

               EPS ,                      
0

        ETA0 ,                                         OMEGA,       

              PSI  ,                      
2

        ETA2 ,                         
)2/(Tpa

R         Rpa ,                                                                                                                                                                                                                  

               FI   ,                       
3

        ETA3 ,                         
)2/(Tba

R         Rba .     

                                                        NI (true anomaly), 

PROGRAM VzeVse; 

    Var 

b, g3, ETA0, ETA, ETA2, ETA3, NI, PSI,  

Vzs, Vze, Vse, Vra, d, d1, d0, Rpa, Rba : Real;    

    Const 

Pi=3.14159265358; 

a=149597E3; e=0.01671;  EPS=0.4090877; R=6378.1; Trg=365.256366; T=86164.1; 

OMEGA=7.292115E-5; Co=3E5; ETA1=0.2295132;  FI=0.882554825; 

 

BEGIN     write(‘Rpa=’);                read(Rpa); 

               write(‘NI=’);                  read(NI);                NI:=NI*Pi/180;                                                                                                                                                                                                                                                                      

                                                                                                                                           

                   b:=sqrt(a*a-sqr(e*a)); 

                 g3:=e*(1+e*cos(NI))/(sin(NI)*(1-e*e)); 

       ETA3:=arctan(-sqr(b/a)*(g3+cos(NI)/sin(NI))); 

       ETA2:=ABS(ETA3);                                  ETA0:=arctan(b/(e*a)); 

            if  NI>0  then     begin   if NI<=Pi-ETA0     then     PSI:=NI+ETA2;          end;  

            if  NI>Pi-ETA0  then  begin  if  NI<Pi         then     PSI:=NI-ETA2;          end; 

            if  NI>Pi  then    begin   if  NI<=Pi+ETA0   then     PSI:=-Pi+NI+ETA2;   end; 

            if  NI>Pi+ETA0  then  begin   if  NI<2*Pi    then     PSI:=-Pi+NI-ETA2;   end; 

      Vzs:=2*Pi*a(1+e*cos(NI))/(Trg*24*3600*sqrt(1-e*e)*sin(PSI)); 

      Vra:=OMEGA*R*cos(FI); 

            if  NI>0    then    begin   if    NI<=Pi-ETA0  then      ETA:=Pi-ETA2;       end; 

            if  NI>Pi-ETA0   then   begin    if  NI<Pi      then      ETA:=Pi+ETA2;      end; 

            if  NI>Pi   then   begin     if   NI<2*Pi           then      ETA:=ETA3;            end;  

 

      Vse:=0;      d0:=1E-5; 

REPEAT      Vse:=Vse+d*1E-1; 

 

       d1:=(Vzs*sin(EPS)*cos(ETA+ETA1)+Vse*cos(EPS))/sqrt(Vzs*Vzs+Vse*Vse); 

        d:=ABS(2*Pi*Co*Co*Rpa/(Vra*T)-Pi*Vra/4-sqrt(Vzs*Vzs+Vse*Vse)* 

            cos(arctan(d1/sqrt(1-d1*d1)))); 

                                                   if d>25   then   d:=0.5*d0; 

UNTIL  d<d0;          Vze:= sqrt(Vzs*Vzs+Vse*Vse); 

 

                              write(‘ Vze=’,Vze);    writeln;  

                              write(‘ Vse=’,Vse);    writeln;  writeln; 

END. 

 

PROGRAM VzeVse  calculates the absolute speeds of the Earth (Vze) and the Sun (Vse).    

The variables d1, d  in  REPEAT should correspond to individual equations (3.84), (3.85),  

(3.89), (3.90). 

In  REPEAT  the equations (3.84)  was  included.                  

Table 14 contains results obtained from equations (3.84), (3.85) (calculated with method I ). 

Table 15 contains results obtained from equations (3.89), (3.90) (calculated with method II).    
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    RESULTS AND CONCLUSIONS            
                       

                    

 

Michelson’s experiments and the values of interference fringe shifts calculated with the 

mathematical model confirm the notion of both the existence of the aether and the 

applicability of the Galilean transformation. The speed of light in an inertial system depends 

upon the velocity of that system with respect to the aether. By observing shifts of 

interference fringes, the absolute speed oV  of the interferometer can be determined. Hence it 

is possible to build a speedometer which can measure the  absolute speed of an inertial 

system (of a spaceship, for example) with no need for the system be linked with any external 

frame for reference. 

 

Based on the calculation results, which can be found in the tables, the absolute speed of the 

interferometer on the Earth’s surface was determined and expressed with respect to the 

speed of light as follows: 

                     410  ≤ 4
00 102/ CV             (1.124).  

Just as J. C. Maxwell had predicted, the speeds of the Earth, the Sun and our Galaxy centers 

with respect to the aether were determined by measuring optical phenomena alone.  

 

The values of the interference fringe shifts (see Tables 2-5) can be tested in a very simple 

experiment. All that needs to be done is to place the Michelson’s interferometer in a 

spaceship traveling at the absolute speed that is specified and linked to the speed of light by 

the inequality:  

                      4
00 102/ CV                                                                                          

If we consider a changeable mass of a particle (Chapter III), Newton’s second law of motion is 

non-invariant with respect to the Galilean transformation, which effectively means that 

Newton’s laws of mechanics are different in systems 1 and 2  if the variable mass of a 

particle is considered. Hence the absolute speed of an inertial system can be determined with 

the help of mechanical experiments performed inside that system (the spaceship). 

The above results from the equations (3.13a), (3.13b) and (3.13c)  see Fig. 12. 

  

In this work it was also shown that knowing the difference in times measured by atomic 

clocks situated on the Earth’s surface, the absolute velocities  of the Earth and the Sun can be 

calculated. The elongation of the Earth’s sidereal day with respect to the time measured by 

atomic clocks was evidenced as being merely apparent. The clock in system 2 runs slower 

when compared to an identical clock in the preferred system 1. The lifetime of unstable 

particles  in  system 2 is longer than the lifetime of identical particles in the preferred   

system 1. 
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SUPPLEMENT 

  

S.I   THE VELOCITIES OF THE EARTH AND THE SUN’S CENTERS WITH RESPECT  

       TO THE  AETHER 

  
The changes in the length of the Earth’s day [9] include the following: 

  ━  a linear trend, which brings about  the elongation of the Earth’s day by about  s8.1  per 

       100 years i.e.  per million years.    

  ━  long-term component  of around . amplitude. 

The remaining components of the day’s length variability are periodical (oscillating). 

 

In our opinion, in reality the long-term component of the Earth’s day variability is only 

apparent and follows the equation (3.61): 

                 .   Then it needs to be assumed:   

                 sT 091.86164  

After the equation (3.61) is transformed, we obtain:      

                  ,   because    ,    as   .  Hence 

                  4
3

00 10244.1
091.861643

10
2/ 






CV  ,        ,     so 

(S.1)           4
0 10244.1/ CVze      

The quotient  specifies the speed of the Earth’s center with respect to the aether, 

expressed in relation to the speed of light  . 

The value obtained from calculation 4
0 10244.1/ CVze   fits the interval (1.126):                               

410  ≤ 4
0 102/ CVze   , determined with the use of Albert Michelson’s interferometer. 

Therefore, by using the results of the Earth’s rotation observation with atomic clocks the 

speed of the Earth’s center can be calculated with relation to the aether. 

 

The speed  of the Sun’s center with respect to the aether, expressed in relation to the 

speed of light  , equals:  

(S.2)                  4
0 107546.0/ CVse           (Tables 14 and 15,  item 3).  

The given value  4
0 107546.0/ CVse    fits the interval (1.127): ≤ 4

0 1073.1/ CVse , 

determined with the use of the Albert Michelson’s interferometer. 

 Now the direction of both the absolute Sun’s velocity ( ,  Fig. 8) and of the 

velocities (2.1),   (2.2) can be calculated. 

Method I (Table 14, item 3):  

There are velocities (2.1), when the difference of times  measured by atomic 

clocks during the experiment equals  sR Tpa
6

)2/( 108305.0   ,  or   

there are velocities (2.2), when the difference of times equals 

sR Tpa
6

)2/( 106421.1   .  

 Method II (Table 15, item 3):                                                        

There are velocities (2.1), when the difference of times measured by atomic clocks 

during the experiment equals  sR Tba
6

)2/( 106401.1   ,  or    

there are velocities (2.2), when the difference of times equals    

sR Tba
6

)2/( 102615.3  .  
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 S.II      THE DURATION OF ASTRONOMICAL WINTER  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. Sa        The locations of the Earth at the start of astronomical winters and at spring  

                   equinoxes. 

 

SYMBOLS:           average distance Earth-Sun,                         

                            small semi-axis of the Earth’s orbit, 

                          the center of the Sun, 

                          location of the Earth at the start of astronomical winter, 

                          location of the Earth at spring equinox, 

                        year  2010,                year  2011, 

                         a year, when the duration of astronomical winter is the shortest, 

                     the following year, 

                        a year, when the duration astronomical winter is the longest, 

                    the following year. 

                                      

Angles:  ∡ ,      ∡ ,      ∡ . 

The above angles are smaller than by the precession angle in the eclipse during 

astronomical winter.                                                                                                            

Angle 1 ∡ )( 1ASa n  determines the Earth’s location on its orbit around the Sun at the start 

of astronomical winter.  

Angle 1  increases every year by the precession angle .            

Annual precession    in ecliptic (in longitude) equals:  rzrz TTp /01397.0/292.50 0''   , 

                                                                                 where:     tropical year.    

 

Year  2008,  2009  (example on page 46):  

(S.3)                212402.130
)8(1  ,              

(S.4)                daysT mhd
z 986111.88402388)8(   

                                      where:      the duration of astronomical winter.     
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)1(1)(1 90)( mnm BSA 0

)1(1)(1 90)( MnM BSA

090
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p
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Year  2010,  2011 (example on page 73): 

(S.5)               1501154.130
)10(1  ,                        

(S.6)               daysT mhd
z 9876388.882.422388)10(                            

 

Year     : 

(S.7)               ,        rz

rz

m
T

Tp
p 2280

/01397.0

1501154.1345

0

00
)10(1)(1





 

  ,    so 

(S.8)                

The duration of astronomical winter can be determined from the equation (2.17): 

                     ,     hence 

(S.9)               daysT mz 587430398.88)(             
      

 

Therefore 4290 will be the year when the duration of astronomical winter will be the 

shortest:  days587430398.88                          

Up to the year 4290 the duration of astronomical winters will be diminishing, thus for each 

year  throughout that period the following inequalities  are fulfilled: 

(S.10)             )(1)1(1 nn    

(S.11)             )()1( nznz TT    

 

Angles (S.3), (S.5)  as well as the times  (S.4), (S.6) have been determined with the 

astronomical winters and spring equinoxes starting time known and given in the Astronomical 

Annals of the Instytut Geodezji i Kartografii [Institute of Geodesy and Cartography]:        

                    )8(1)10(1    

                     

These inequalities are in opposition to inequalities (S.10), (S.11), which leads to the 

conclusion of possible discrepancies in the Annals. 

The discrepancies affect the accuracy of the results of calculations on page 46 and 73.  

                                      

Year  :                                                                                                                 

(S.12)            ,     rz

rz

M
T

Tp
15165

/01397.0

1501154.13225

0

00
)10(1)(1





 

    ,   then 

(S.13)              

The duration of astronomical winter can be determined from the equation: 

(S.14)            ,       where:   ,    

                                                                             )(t   function (2.13) 

                                                                             rgT    stellar year. 

Therefore 

(S.15)            daysT Mz 086078982.94)(  . 

Thus 17175 will be the year when the duration of astronomical winter will be the longest:.    

days086078982.94 . 

From 4290 to 17175 the durations of astronomical winters will be increasing, so for each year 

 during that period the following inequalities are fulfilled: 

(S.16)             )(1)1(1 nn    

(S.17)             )()1( nznz TT     

  

The calculations were carried out assuming constant parameters of the Earth’s movement on 

its orbit.   

                          

1, mm

0
)(1 45m

429022802010 m

)360()90( )(1
0

)(1
0
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0
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S.III     DETERMINING THE ALTITUDE AND THE AZIMUTH OF THE EARTH’S     

            CENTER VELOCITY  

 

Pages 40, 42, 43 give the formulas to calculate the altitudes and the azimuths of the Earth’s 

center velocity: ,  ,  .  These will be marked as velocity. 

The formulae will be derived with the letter H denoting the altitude of the Earth’s center 

velocity  (Fig.Sb2) and the letter denoting the azimuth of the velocity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Fig.Sb1      Azimuth   and zenith altitude  of the Earth’s center velocity . 

  
SYMBOLS:   

         the center of the globe,  

         vertical line  running through the center of the globe and  the point on the globe (Fig. Sb2) in  

            whih the observer is located, 

         velocity   at which the Earth’s center travels around the Sun  (Fig. 6, 7) or velocities  

             ,  of the Sun’s center  with respect to the aether, which are also the velocities of the    

            Earth’s center  (Fig. 8 ), 

        azimuth of the Earth’s center velocity ,    

       a point at which the vertical line cuts through the celestial sphere, 

       a point at which the direction line of velocity cuts through the celestial sphere,    

     coordinates of the point, 

    Greenwich Hour Angle of the Earth’s center velocity ,  

    Local Hour Angle of the Earth’s center velocity ,  

        declination of the Earth’s velocity ,    

        zenith altitude (angle) of the Earth’s center velocity ,  

1   celestial equator, 

2   celestial meridian of the observer, which runs through the point,     

3   meridian  which runs through the point,     

4   hour semi-circle which runs through the point,  

5   semi-circle which runs through the vertical line  and point ,   
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6   Greenwich meridian,  

        point located on the circumference of the semi-circle (item 5),                                                          

    coordinates of the point,    

 

 

   

 

 

                   

 

 

 

 

 

 

 

 

 

 

 

  Fig.Sb2       Zenith altitude   and the altitude  of the Earth’s velocity . 

  

 SYMBOLS:            the globe center,   

                        7      the globe,  

                        zenith altitude of the Earth’s center velocity ,  

                          altitude of the Earth’s center velocity , 

                          point (location) on the globe in which the observer is located, 

                       plane of celestial  horizon (plane’s projection), 

                         plane of the Horizon, which runs through the point (plane’s projection), 

    5, , ,      as described in Fig.Sb1 . 

 

The following unit vectors can be defined (Fig.Sb1): 

(S.18)                ,                              ,                                    

(S.19)                ,                         ,                              

(S.20)                LHAcoscos ,             ,               , 

                        where:   

The modulus of the unit vectors: 

(S.21)                  

 

THE ALTITUDE   OF THE EARTH’S VELOCITY .  

Zenith altitude  of the Earth’s center velocity  can be determined from the scalar product 

of the vectors  (S.19), (S.20).  

                           

Fig.Sb2 shows the relationship: 

                        ,                           then 

                        HHZ sin)90(coscos 0  ,    so    

(S.22)                    

Hence the altitude  of the Earth’s center velocity  is equal to: 

(S.23)                )       
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AZIMUTH   OF THE EARTH’S VELOCITY  . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             Fig.Sb3              Azimuth  of the Earth’s velocity . 

 
SYMBOLS: 

                      azimuth of the Earth’s center velocity    (Fig.Sb1),        

                8     meridian, 
       9      parallels of altitude,   

   2, 5,     as described in Fig.Sb1.      

 

We select any point  on the circumference of the semi-circle (Fig.Sb1, item 5) near          

the  point.                                                                                                         

The coordinates of point  are  .  Hence we have point . 

A unit vector  : 

(U.24)             ,          ,                 

Let us draw a vector   perpendicular to semi-circle which runs through points , ,  

and the vertical line .  Vector  is  hence perpendicular to vectors , , . 

Vector  can be obtained with the vector product of the vectors (S.19), (S.20): 

(S.25)               ,       ,          ,      where: 

(S.26)                  

(S.27)                    

(S.28)                    

Then, by applying the scalar product of vector  and vector  the equation of the semi-

circle circumference can be obtained:       ,     so 

                    ,   which after transformation 

takes the form of the following equation:       .     

After the above is differentiated, we obtain: 

(S.29)           

If the  point (Fig.Sb1) heads towards , then    i   ,  so 

                                            ,     

Consequently the equation (S.29) takes the form: 
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                      ,   hence after transformation: 

(S.30)             

From Fig.Sb3  results the following relationship: 

                      ,  where: azimuth of the Earth’s center velocity . 

Having considered the (S.30) equation and transformed the above equation we have: 

                      

After considering coordinates (S.27), (S.28) we obtain: 

                       

                                 

and ultimately : 

(S.31)               

Let us now determine  . 

We start with drawing a vector  perpendicular to the plane of the celestial meridian of the  

observer. This meridian runs through points . Vector  is therefore perpendicular to 

vectors .  Vector  can be obtain by applying the vector product of vectors   

(S.18), (S19). 

(S.32)                ,         where: 

                             ,           ,              ,    then  

(S.33)              

The azimuth of the Earth’s velocity   is the angle between the plane of the observer’s 

celestial meridian and the semi-circle that runs through points  and the vertical line .  

The azimuth of the Earth’s center velocity is then also an angle between vectors            

 (S.25),  (S.32).  Hence 

(S.34)               

The scalar product of vectors (S.25), (S.33): . 

Hence after transformation and  adoption of equation (S.22) we obtain: 

(S.35)                

The modulus of the vector    (S.25):      

After considering the coordinates from (S.26), (S.27), (U.28) and the relationship (S.22), the 

following can be obtained:                           

(S.36)                                  

The modulus of the vector  (S.33):   ,   so 

(S.37)                                  

Ultimately, after introducing scalar product (S.35) and modulus (S.36) and (S.37) to equation 

(S.34), we obtain: 

(S.38)                  

0
cos

1
232  


dWdLW VV




d
W

W
dL

V

V

2
2

3

cos




22 )()cos(

cos
sin





ddL

dL
A



 A V


22
2

2
3

3

cos

sin

VV

V

WW

W
A

















222 cos)cossincossin(cos)sincoscos(

sincoscos
sin

LHALHA

LHA
A

LHA
HH

LHA
sin

cos

cos

coscos

sincoscos

22





 





LHA
H

A sin
cos

cos
sin




Acos

NW


NU PP , NW


NU POPO


, NW


],,[ 321 NNNNUN WWWPOPOW 


01 NW cos2 NW 03 NW

]0,cos,0[ NW


V


VU PP , lp

V


VW


NW


NV

NV

WW

WW
A




cos

)cos()cossincossin(cos   LHAWW NV



 sinsinsin HWW NV 


VW


2
3

2
2

2
1 VVVV WWWW 

HHWV coscos2 

NW


 cos)cos( 22
3

2
2

2
1  NNNN WWWW

cosNW





coscos

sinsinsin
cos

H

H
A






 95 

S.IV        THE SPEEDS OF THE EARTH AND THE LIGHT WITH RESPECT                        

             TO THE AETHER  

 
The speed of light  in a vacuum with respect to an inertial system depends on the system’s 

speed  with respect to the aether and to the direction light is travelling in that system. The 

 speed can be defined by the equation (3.7): 

(S.39)         ,     as   , 

     where:         speed of light in a vacuum with respect to the  aether, 

                       angle that determines the direction in which light is travelling, Fig. 11. 

 

When the  speed equals the  speed of the Earth’s center with respect to the aether, the 

equation (S.39)  takes the following form:  

(S.40)            

 

According to existing experimental data [1] the light speed  in vacuum, measured on the 

Earth takes the value: smC /)2.1458792299(    ,  hence 

                sm /)2.1458792299(  ≤ C  ≤ sm/)2.1458792299(      

In nearly all experiments concerning light speed measurements, the light travels in two 

directions i.e. there and back. Therefore the light speed value obtained is the value for both 

directions of the light movement. 

 

It can be concluded from the equation (S.40) that the highest measured value of light speed  

occurs when the velocity of light is perpendicular  ( )  to the Earth’s velocity 

 and is the same  in both directions (  or  ). Hence it can be 

concluded that the speed sm /)2.1458792299(    means that the measurements of the light 

speed were taken at the angles   and thereabouts. Thus the highest value of the 

speed of light  in relation to the Earth and in terms of absolute time is:    

(S.41)         smCVCCC zeo /)2.1458792299()/(1)90(
1

22
00

0
2,max 









   .  

From the relationship (3.49): 

(S.42)         ,       as      

From the equation (S.40) it can also be concluded that the lowest measured value of the light 

speed  occurs when the velocity of light is parallel to the velocity of the Earth  . 

Hence it can be concluded  that the speed sm /)2.1458792299(    means that the 

measurements of the light speed  were taken at angles    and 

thereabouts. Thus the lowest value of the  light speed  in relation to the Earth and in 

terms of absolute time is:                                                                                                                                                    
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
                            

                 where:        distance travelled by light in one direction during the   

                                     measurement.  

                                   

From the (S.41) equations, we obtain: 
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From the (S.43), (U.44) equations, we obtain: 
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              )2.1458792299(

)/(1

)/(1
)2.1458792299(

2
0

2
0 






CV

VV

ze

ze ,    thus 

(S.45)      )2.1458792299()/(1)2.1458792299( 2
0  CVze ,   hence                      

 (S.46)     )2.1458792299(])/(
2

1
1[)2.1458792299( 2

0  CVze ,   as   1/ 0 CVze  

After transformation of the above, the following is obtained: 

                4
0 10265.1

2.1458792299

4.22
/ 




CVze  ,     hence  

(S.47)        4
0 10265.1/ CVze   

 

The quotient (S.47) defines the speed   of the Earth’s center with respect to the aether, 

expressed in terms of the light speed    and takes values, determined with the use of 

Albert Michelson’s interferometer, ranging (1.126):   ≤ 4
0 102/ CVze   

 

Having considered the relationship (S.42) and , the equation (S.44) takes the 

following form:       smCVCVC zeze /])/(
2

1
1[)2.1458792299(])/(

4

1
1[ 2

0
2

00                                  

Then after considering the relationship  (S.47) we obtain:   

smsmC /4.460792299/])10265.1(
2

1
1[)2.1458792299(])10265.1(

4

1
1[ 2424

0                

Hence the speed of light  in vacuum and with respect to the aether, expressed in terms of 

absolute time, is:    

(S.48)            smC /4.4607922990   

 

A unit of measurement – a meter – used herein, corresponds to the definition of a meter that 

was in operations up to 1983 and was based upon the light wavelength measured with the use 

of Albert Michelson’s interferometer.   

 

 

 

 

 

 

                           

S.V             VALUES  OF THE SHIFTS OF  INTERFERENCE FRINGES 

 

When calculating values of the shifts of interference fringes  with Albert Michelson’s 

interferometer (Tables 1 - 7) a constant value of the light wavelength emitted by the light 

source was adopted m7
0 109.5    .  This source is placed inside the interferometer and 

has the absolute speed  0V  of the  interferometer.  

Let us write the following equations: 

(S.49)                4/12
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A
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






 , 

where:   10    light wavelength, at the source of light absolute speed  00 V   - system 1, 

            02    light wavelength, at the source of light absolute speed  0V        - system 2, 

     21 , AA      frequencies of vibration of the source of light atoms in systems 1 and 2, 

     0201 , mm     rest masses of the source of light atoms in systems 1 and 2. 

                    2
000201 )/(1 CVmm    relationship (3.27a). 

Systems 1 and 2 are presented in Fig. 10. 
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From the equations (S.49) we obtain:             

(S.50)           
4/12

00

10

20
])/(1[ CV




           

Hence, the relative difference of the distances travelled by the light rays in the 

interferometer is described  by the following relationship: 

(S.51)           4/12
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])/(1[ CV
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






  

According to relationship (1.109a):  wRl  0/ ,   therefore the following is obtained: 

(S.52)           4/12
00

02

])/(1[ CVR
l

w 



   

According to relationship (1.113) the interference fringes shift value: 122 ),( www RRVk  .  

Having considered (S.52) the equation (1.113) takes the following form: 

(S.53)            4/12
00122 ])/(1[)(),( CVRRVk www    

(S.54)            ])/(
4

1
1[)(),( 2

00122 CVRRVk www  ,                when    1/ 00 CV  . 

The equation (1.117) which defines the value of k  depending on distance increment 2l  takes 

the form as follows: 

(S.55)            4/12
002222 ])/(1[)(),,( CVRRlVk wlwwn      

(S.56)            ])/(
4

1
1[)(),,( 2

002222 CVRRlVk wlwwn   ,      when   1/ 00 CV         

 

The values of the interference fringes shifts in Tables 2, 3, 4, 5 (without the last item) and in 

Tables 6, 7, are subject to very small changes, as the expressions: 4/12
00 ])/(1[ CV  ,   

2
00 )/(

4

1
1 CV    feature values very close to 1 for given values of 00 / CVVw   that are 

presented in these tables.    

 

Different values of the shifts of interference fringes at : 

                     99749.0)(])1.0(1[)(),( 12
4/12

122 wwwww RRRRVk   

     

While determining the values of the interference fringes shifts in the interferometer, the 

relationship between the light wavelength (S.50) of the source and its absolute speed  0V   

should be considered.  

 

 

 

 

S.VI   UNITS OF MEASUREMENT 

Since 1983 the following definition of a unit of length has been in operation: 

The meter is the length of the path travelled by light in vacuum during a time interval of 

1/299 792 458 of a second. This study indicates that the speed of light is constant in the 

absolute (preferred) system only. In vacuum the speed of light in the inertial system depends 

on the absolute speed of the system and a direction towards which light is travelling. Times 

measured by atomic clocks depend on the absolute speed of the clocks. 

Hence the length determined in laboratory experiments following the above mentioned 

definition varies as it depends on the Earth’s speed on its orbit and its circumvolution. 

Consequently derivative units expressed in terms of meters and seconds cannot be constant.  

 

Due to the above, the units of measurement should be defined for the preferred system. 

  

 

 

1,0wV
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S.VII   THE MOTION OF MERCURY  PERIHELION  

 

In 1859 a French astronomer Urbain Le Verrier noticed that the motion of the Mercury 

perihelion differs from its theoretical assessments. Exploiting Newton’s celestial mechanics 

he calculated the contributions of each individual planet to the rotation of the Mercury elliptic 

orbit. The sum of the perturbation effect of all external planets amounted to about 7'.'526  

within a period of one hundred years, which means about 267.0 ''  per annum. He analyzed the 

records of astronomical observations since 1697. That enabled a very precise  assessment of 

Mercury’s locations and made the calculation of the value of the observed perihelion motion 

possible. The value was equal to ''565  within a period of one hundred years. There was a 

discrepancy between the observed and the calculated values of the perihelion movement of 

about 3.38 ''  within a period of one hundred years, which means about 383.0 ''   per annum. This 

additional shift of 383.0 ''   in Mercury’s motion on its orbit can be explained by the elongation 

of a terrestrial day.   
If the angular speed of the Earth’s revolution was constant,  the observed annual motion of 

the Mercury perihelion would be equal to 267.5 ''  as a result of the planets’ perturbation. 

However due to the elongation of a terrestrial day by  at  per year, the observer saw 

Mercury shifted in its direction of orbital motion by an additional angle of 383.0 ''   that is         

a true anomaly: 000106388.0383.0 0''   . We apply a function )(t  that defines the time 

after which Mercury takes a position on its elliptic trajectory determined by the angle    

(true anomaly). The function )(t  is defined by the relationship (2.13), Fig. 6.  
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 )            (2.13),   

where:   

             sT smhd
rg 760054444152387    (Mercury’s stellar year),   

             20563069.0e    (eccentricity of Mercury’s orbit). 

With the angle 000106388.00 ,  the annual elongation of a terrestrial day at  in the period 

from 1697 to  1859 can be calculated from the relationship (2.13):       

             stta 448.1)000106388.0( 0   . 

Very precise observations of the Earth’s rotary motion started in the second  half of the 20th 

century after atomic clocks began to be used and the elongation of a terrestrial day had been 

evidenced. From 1972 to 2012 i.e. over the course of 40 years, a day length has extended by 

s25 . Thus the annual average elongation of a terrestrial day in that period of time is: 

ss 625.040/25  . Apparent annual elongation of a terrestrial day with respect to the time 

measured by atomic clocks is about  s365.0   (see Table 13). Then the real annual elongation 

of a terrestrial day bt  from 1972 to 2012 is:  ssstb 26.0365.0625.0  .  

  

From the above it is evident that the value of a terrestrial day elongation is diminishing: 

ab tt  .  This process will stop after the melt down of the glaciers (S.9). Then the small 

oscillating and seasonal changes of the terrestrial day will occur. The advent of the next ice 

age will see a considerable increase in the speed of the Earth’s rotary motion due to a rapid 

decrease of the Earth’s moment of inertia.                                                                      

The Moon and the Sun exert impact on the Earth’s motion. As a result the energy of its rotary 

motion wears away, which causes the elongation of a terrestrial day by about  sm8.1  per 

century [9]. 
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S.VIII    PLANCK  CONSTANT?  

 

In quantum physics the frequency   of the hydrogen atom spectrum lines takes the following 

form: 

(S.57)               )
11

(
8 2232

0

4

kjh

em



   ,      where:  

            kj ,       integers describing a lower and higher steady state respectively, 

               m       mass of an electron,  

                e       electric charge of an electron, 

               0       permeability of vacuum, 

                h       Planck constant  ( sJh 3410626176.6  ). 

Let us consider a motion of a hydrogen atom in a preferred system i.e. absolute. 

When the atom moves at the absolute speed 0V , the electron mass is:  

(S.58)                0102 mmm       relationship (3.27),    where:   

                                            01m      electron rest mass  in the preferred system, 

(S.58a)              
2

00 )/(1

1

CV

      relationship (3.2), 

                                  0C       speed of light with respect to the preferred    

                                            system i.e with respect  to the aether.  

According to quantum physics the electron’s angular momentum is linked with Planck constant 

h . Then the presence of electron’s mass in the angular momentum, as described by formula 

(S.58a), prompts the application of the pH  factor in the equation (S.57) instead of constant h :                      

(S.59)                     01hH p    ,    where:        

                                    01h      a constant defined by (*),  

                                            expression (S.58a). 

Max Planck determined the h  value by analysing the spectrum of the perfect black-body 

radiation, exploiting the observation results of this body on the Earth. The Earth has a minute 

absolute speed  0
4

0 10244.1 CV     (S.1), thus the value of the 10h  constant at the absolute 

speed 00 V  can be calculated with Planck constant h  that was determined on the Earth. 

                             ))10244.1(1/1( 24
10

 hh   ,      therefore                                                      

     (*)                   sJhh 34
01 10626176.6  . 

                     

The absolute speed of the Centre of our Galaxy gV0  is small  0
3

0 10 CV g
    (1.131), hence 

the pH  factor for the entire Galaxy is defined by the following equation: 

                 )10
2

1
1())10(1/1( 6

01
23

01
  hhH p   , thus it can be assumed that:                    

                 sJhH p
34

01 10626176.6      

The equation (S.57) for the atom absolute speed 0V , now takes the following form:                     

(S.60)                   )
11

(
8 2232

0

4
02

kjH

em

p

H 


   

Having considered equations (S.58), (S.59) we obtain: 
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At the atom’s absolute speed  00 V , the frequency of emitted light is described by the 

equation: 

(S.62)                  )
11

(
8 223
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4
01

0
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em
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


  ,      because   1    

Using equations (S.61) and (S.62) we obtain: 

                     ])/(1[
1 2

00020 CVHHH  


   ,     hence 

(S.63)                 ])/(1[ 2
000 CVHH      

Therefore the frequency of the hydrogen atom spectrum lines H  depends on the atom’s 

absolute speed 0V  .  

When the atom make a transition from the kE   energy level to the  jE  level of lower energy, 

it emits energy: 

                  2
000010012001 )/(1

11
CVhhhHEEE HHHHpjk  





  ,   

therefore 

(S.64)          2
00001 )/(1 CVhE H     ,     where:   H0      relationship (S.62). 

                         00 CV       0E    

The relationship (S.64) also implies that the atom emits the highest amount of energy           

(a quantum of energy) while motionless ( 00 V ) with respect to the absolute system i.e. with 

respect to the aether.  

The distance r  between the nucleus and the electron on its elementary state of lowest 

energy level: 
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Considering (S.58) and (S.59) the following is obtained: 
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At the hydrogen atom  absolute speed   0V  
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From (S.66) and (S.67) results the following relationship: 

(S.68)             
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)/(1 CV

r
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Therefore it can be concluded that for atoms there exists such an absolute speed  0V   above 

which no chemical bond can occur.  Hence in galaxies speeding across the Universe with the 

absolute speeds exceeding the speed of our Galaxy, living organisms cannot exist. 
 

DOPPLER’S  EFFECT 

Two cases of motion of the source of light ZS  in a preferred (absolute) system  000 ZYOX ,  

Fig.Sc1, will be examined and the absolute speed of each motion will be specified. 

The Observer is located in the origin of the coordinate system  000 ZYOX .  

According to Doppler’s effect, the spectrum lines frequencies of an atom that moves at an 

absolute speed  oV , which can be observed by the motionless Observer in the preferred 

system are: 
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(S.69)                 
0000

0
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1

CVVC

C
HHobs





     ,      where: 

          obs        observed frequency of spectrum lines, 

          H        frequency of spectrum lines of a moving atom (relationship (S.63)), 

 

 

 

 

 

 

 

 

                     Fig. Sc1    Preferred (absolute) system, motionless with respect to the aether. 

                                       

                            Symbols:     ZS   source of light (hydrogen atoms).                   

Absolute velocities:   ]0,0,[ 00 aa VV 


,             

                                ]0,0,[ 00 bb VV 


,                                  

Absolute speed aV0  is a module of  aV0


 velocity.                                                        

Absolute speed bV0  is a module of  bV0


 velocity. 

 

 

a)  The source of light ZS  is moving away from the observer along 0OX  axis at  aV0


    

velocity. 

The equations (S.63), (S.69) take the following form: 

(S.70)        ])/(1[ 2
000 CV aHH      
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From the equations (S.70), (S.71) we have: 
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The lengths of spectrum lines are: 

(S.73)        obsobs C  /0   ,           HH C 000 /   

     Where:  obs     the observed length of the spectrum lines, 

                H0     the length of spectrum lines when atom’s absolute speed 00 V . 

 

The relative shift of the spectrum lines lengths: 

                           
H

Hobs

aZ
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 
   .   After considering relationship (S.73) we obtain:  
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Then considering (S.72) we have:    1
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a   .  Hence ultimately the speed  aV0  :     
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CV   ,   where:     0aZ  ,         Fig. Sc2     

                                                            aZ  ∞     00 CV a    
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b)     The source of light ZS  is moving towards the observer along 0OX  axis at  bV0


      

velocity. 

Equations (S.63) and (S.69) now take the following form:   

(S.75)         ])/(1[ 2
000 CV bHH     

(S.76)         
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From equations (S.75) and (S.76) we have: 
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The relative shift of the spectrum lines lengths:    
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Having considered (S.77) we have:  
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CV     ,    where: bZ 5.0   ≤ 0  ,      Fig. Sc2    

                                                                       005.0 CVZ bb   

The speed of the Earth with respect to the aether i.e. with respect to the preferred (absolute) 

system  is very small (appx. 0
410244.1 C ) , therefore the specified  absolute speeds  (S.74) 

and (S.78) of the light source ZS  apply also to the observer that is located on the Earth.   

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. Sc2    Absolute speeds aV0  , bV0    of the light sources ZS  (hydrogen atoms). 

                The relative shifts aZ  , bZ  of the lengths of the atom’s spectrum lines. 
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Absolute speeds ba VV 00 ,  of atoms in distant galaxies, can take values close to the speed of 

light 0C  . 

The observed length obs  of the spectrum lines for hydrogen atoms is expressed by the 

following relationship (S.73): 

   obsobs C  /0  .  After considering (S.72) we obtain: 
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    where HH C 000 /    is the length  of the spectrum lines of motionless atoms ( 00 V )   

    with respect to the absolute system, relationship (S.73). 

thus      00 CV a         Hobs 0/  ∞ .  

Example:  If   98.0/ 00 CV a ,   then   50/ 0 Hobs  .   

Therefore there is such an absolute speed aV0  of atoms that are moving away from the 

observer,   above which the atoms’ spectrum lines cannot be observed or their observation, at 

present, is impossible if only due to technical reasons. These atoms constitute invisible (dark) 

matter.                                                                                                                       

Having considered the relationship (S.77 ) we have: 
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Therefore the spectrum lines of the atoms moving towards the observer are visible at every 

absolute speed bV0  . 

 

 

 

 

 

 

S.IX   THE AETHER 

 

In this work no definition of the aether is provided. However, the existence of a static medium 

that fills up the entire 3D cosmic space was assumed together with its name ‘the aether’ 

adopted due to historical reasons.  

The authors do not presume the medium is identical to  the aether  defined by the 19
th
 century 

physicists. To define the aether, broad research is required.  

A frame of reference that is motionless in relation to this medium has been assumed. 

Consequently, the presence of the frame of reference has been evidenced and therefore the 

aether’s very existence proven. This is the preferred inertial and absolute frame of reference 

in relation to which absolute velocities and speeds are determined. The speed of light in a 

vacuum, in relation to the absolute frame of reference (i.e. in relation to the aether) equals     

‘ Co ‘ and is the same in all directions. 

Vacuum is space filled with the aether and devoid of material particles . Therefore                 

‘ nothingness’ does not exist as the omnipresent aether constitutes unity with the space.  
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S.X    THE PURPOSE-BUILT INTERFEROMETER TO SHOW EARTH’S MOTION  

          WITH RESPECT TO THE AETHER 

 

The interferometer shown in Fig.Sd1. allows us to evidence the Earth’s motion in relation to 

the preferred coordinate system i.e. the aether. 

 

 

Fig.Sd1   Diagram of interferometer and the trajectory of light in the interferometer. 

   

SYMBOLS:    ZS         source of light,                                    0S       slit, 

                     Z          mirror,                                                M       screen, 

                    PP        semi-transparent plate,     

         321 ,, AAA          points successively reached by a ray of light after leaving the 

                                slit 0S  at the angle  ,                              

          321 ,, BBB         points successively reached by a ray of light after leaving the 

                                slit 0S  at the angle  ,      

        ),( 2LeA zz         mirror Z half-length point 

  

Following values were used in calculations: 

                                mLL 2.131  ,       mL 8.02  ,    mL 14.03  ,     mez 15.0 , 

                                mg 31025.1       thickness of PP plate, 

                                025z               inclination of the mirror Z  to the arm 1L , 

                                m7
0 109.5      the wavelength of light in a vacuum, 

                                52.12 n              the PP plate refractive index with respect to 

                                                          a vacuum.    
The calculations of the interference fringe shifts values were performed with the use of 

computer software abIn (Chapter IV). 

 

The length of segments  3211 ,,, bbba  and the coordinates  of points 3211 ,,, BBBA  (Fig.Sd2) 

were determined via the mathematical model of Michelson’s interferometer (Chapter I). 

 

Now we are going to determine the length of segments 32 , aa  and the coordinates of points  

32 , AA . 
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THE MOTION OF INTERFERONETER IN THE  OXY COORDINATE  SYSTEM: 

Fig.Sd2   The trajectory of light rays reaching points 33 , BA  on screen M  after leaving 

              the slit 0S  at the angles   , .  

 

The line equation of the mirror Z : 

(S.79)                    )cos(sin 002  VtetgVtLxtgy zzz   

The equation of the 2y  straight line which passes  through the point ),( 111 aa yxA  is: 

(S.80)                   1
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1
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2 )90()90( aa xtgyxtgy    

Lines (S.79), (S.80)  pass through the point  ),( 222 aa yxA , therefore after considering 

021 /)( Caat    and  wVCV 00 / , the following is obtained: 

(S.81)                   ]cos)([sin)( 2121222  wzzwaza VaaetgVaaLxtgy     

(S.82)                   1
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2 )90()90( aaaa xtgyxtgy      

The following relationship applies: 

(S.83)                   sin212 axx aa   

From the equations (S.81), (S.82), (S.83) the length of the 2a  segment can be calculated: 
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a ,     thus   

the 2ax  coordinate of the point 2A  can be obtained from equation (S.83).  

and the   2ay  coordinate of the point 2A  can be obtained from equation (S.82): 

(S.85)                    1122 )( aaaa yxxctgy       

   

The equation of the 3y  straight line which passes  through the point ),( 222 aa yxA  is:  

 (S.86)                    2
0

2
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3 ])2(90[])2(90[ azaz xtgyxtgy     

The line equation of the screen  M : 

(S.87)                      cos01 VtLx        

Lines (S.86), (S.87) pass through the point ),( 333 aa yxA , therefore after considering 

0321 /)( Caaat    and  wVCV 00 / , the following is obtained: 

(S.88)                    2233 )2()2( azaaza xctgyxctgy     

(S.89)                     cos)( 32113 wa VaaaLx     
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The following relationship applies: 

(S.90)                     ])2(90[sin 0
323   zaa ayy  

From the equations (S.88), (S.89), (S.90) the length of the 3a  segment can be calculated:    

(U.91)                     
)2(coscos)2(

])([)2( 2112
3






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

zwz

waz

Vctg

oscVaaLxctg
a  ,    thus 

the  3ax  coordinate of the point 3A  is obtained from the equation (S.89). 

the  3ay  coordinate of the point 3A  is obtained from the equation (S.90): 

(S.92)                      )2(cos323   zaa ayy   

 

THE  O’EQ COORDINATE SYSTEM: 

Fig.Sd3    The points 33 , BA   of the screen M, together with their coordinates 33 , ba qq , which 

were reached by the rays of light after leaving the slit 
0

S  at the angles , .    

  

The coordinates of points 321 ,, AAA are defined by equations (1.79),...,(1.84).  

The coordinates of points 321 ,, BBB are defined by equations (1.89),...,(1.94).  

 

The total relative difference of distances travelled by the rays of light: 

 (S.93)                       03221321 /)( uuuuuuw bbnbaaaR   ,     where:  

                                                    uuu aaa 321 ,,    relationships (1.99),  (1.100), (1.101), 

                                                     uuu bbb 321 ,,    relationships (1.104), (1.105), (1.106). 

 

The shift of the interference fringes is calculated with respect to point  Mo with its coordinate 

oq on the screen M.  

In the calculations – the relative approximations of points 33 , BA   to point 0M  are described 

by the following inequalities of coordinates (Fig.Sd3):                                                                                                                                                                                                                                                                                                                                                                                                                      

                    │ 03 qqa  │ 7
0 10/  ,          │ 03 qqb  │ 7

0 10/    

The value of  mq 0314.00    was adopted for calculations.    

The formula (1.113) can be applied to calculate the values of interference fringe shifts with 

respect to any Mo  point on the screen M, after rotating the interferometer by any angle 
2

  

and with the  
oow

CVV /   fixed at any value. 
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TABLE 1S   Values of the interference fringe shifts obtained in the interferometer-Fig.Sd1 

                  at Earth’s relative speed  410244.1 wV . 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2S    Values of interference fringe shifts obtained in Michelson’s interferometer  

                   (Fig.1) at Earth’s relative speed  410244.1 wV .  

 

     
   1    

             1   

             1  

             
           1wR  

 
   Interferometer   
        Fig.Sd1  

          

     

  rad               rad                

    
     0 

  2109272859700.7    

  2103752096417.2   

  
      275369.1714978                    

   
   2  

             2  

             2  
            
           2wR  

       
   12 ww RRk   

  rad                rad                             

    
   4/  

  2109293210486.7   

  2103840956517.2   

    
    273784.1714978  

    

  310585.1   

     
   2/  

  2109251864917.7    

  2103879467438.2    

    
    278831.1714978  

    

    310462.3    

     

4/  
  2109202736003.7    

  2103664940169.2   

 
    280410.1714978  

 

     310041.5   

    

2/  
  2109123925013.7   

  2103630542726.2   

 
    278820.1714978  

 

     310451.3   

     
   1    

             1   

             1  

             
           1wR  

 
   Michelson’s       

   interferometer 

          Fig.1   rad               rad                

    
    0 

   3100632221297.4    

   3106009713906.3   

   
      1315414.3002                    

   
   2  

             2  

             2  

            
           2wR  

       
   12 ww RRk   

  rad                rad                             

  
  4/   

   3100334363765.4   

   3106838569584.3   

    
      1311184.3002  

    

  41023.4   

     
  2/  

   3109520933235.3    

   2107151890224.3    

    
      1314894.3002  

    

   51020.5    

   

4/  
   3100240046661.4   

   3105150847874.3   

 
      1318969.3002  

 

      41055.3   

  

2/  
   3109387581529.3   

   3104765066075.3   

 
      1314913.3002  

 

    51001.5   
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Values of the interference fringe shifts obtained in the interferometer in Fig.Sd1 are greater 

than the values obtained in the Michelson’s interferometer. 

/10041.5 3 │ 41023.4  │ 12    (see Tables 1S, 2S).  

 
CARRYING OUT THE MEASUREMENTS: 

The supporting structure of the interferometer should enable the interferometer to be set up 

in relation to its absolute velocity  0V


 (Fig.Sd4).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Fig.Sd4    Positioning the interferometer in relation to velocity 0V


 . 

                        Schematic diagram    

  

SYMBOLS: 

  21 , LL        arms of the interferometer, 

        pl       vertical line, 

       hp       plane of the horizon (its projection), 

    uu SN       North-South line  , 

        0V


      absolute velocity 01V


 (2.1) of the interferometer or absolute velocity 02V


 (2.2), 

       0A        azimuth 01A  (2.62) of 01V


 velocity within angle range from  00  to  0360 , or  

                  azimuth 02A  (2.69) of 02V


 velocity within the same range of angles,  

       0H       altitude 01H  (2.60) of 01V


 velocity within angle ranges from  00   to 0180  and 

                   rom  00  to  0180 , or altitude 02H  (2.67) of velocity 02V


 within the same  

                   ranges of angles,   

        2       angle between  0V


  velocity and the interferometer’s arm 1L   within angle  

                   ranges from  00  to 0180   and from 00  to  0180 .   
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To calculate the values of 00 , HA  angles, the computer software Vo1Vo2 (Chapter IV) can be 

used. It allows the values of 00 , HA   angles to be calculated for any given point on the Globe 

and for any given time UT (see the example on page 46).   

  

Due to the Earth’s simultaneous rotary and orbital motions, the 00 , HA  angles are subject to 

constant change. Consequently, having calculated the values of those angles and having set 

up the interferometer at those angles with respect to the uu SN  line and the hp plane, the 

change of the 2  angle and the observation of the interference fringe shifts  k   are 

restricted to just a few minute’s time period. 

 

 
SEMI-TRANSPARENT PLATE THICKNESS g   AND INTERFERENCE FRINGE SHIFTS k  

IN THE  INTERFEROMETER: 

 

 

 

 

 

 

 

 

 

 

TABLE 3S   The interference fringe shifts values k for different g  thickness values of the  

                  semi-transparent plate PP at 410244.1 wV .   

 

Thickness g   of semi-transparent plate PP only slightly influences the values k  of  

interference fringe shifts (see Table 3S). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            2            g              k  

           rad            m              -  

 

    Interferometer 

       Fig.Sd1 

 

 

        4/  

 

      3102.0        310032.5      

         3105        310043.5   

            210       310051.5   

         2102         310072.5   
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INDEX OF SYMBOLS 
            0C


      The velocity of the light in a vacuum with respect  to the aether, 

            0C       the speed of light in a vacuum with respect  to the aether, 

            C        the speed of light in a vacuum with respect  to the system 2  (O’EQW), 

            
p

C       the speed of light in the semi-transparent plate PP with respect to the 

                       aether,                                                      

            
o

V


       the absolute velocity of the interferometer and the system 2 (O’EQW), 

            
o

V        the absolute speed of the interferometer and the system 2 (O’EQW), 

oow
CVV /       the absolute speed of the interferometer, expressed with respect to  

                       the speed of light 0C , 

            0        the wavelength of light in a vacuum, 

            p        the wavelength of light in the semi-transparent plate PP,  

             
2

n       the refractive index for the semi-transparent plate PP with respect  to              

                       a vacuum,                            

          ,       angles at which rays of light leave slit 
0

S , 

          
21

,         angles of the light rays refraction in a semi-transparent plate,  

                    angle between the OXo and the OX axes and also the angle at which the  

                       interferometer is situated with respect to its absolute velocity 0V


, 

     51 ,..., aa tt       time intervals in which a ray of light reaches successively points 
51

,...,AA   

                       after leaving slit 
0

S , 

      
51

,...,
bb

tt          time intervals in which a ray of light reaches successively points 
51

,...,BB   

                       after leaving slit 
0

S , 

       
51

,...,aa         distances between contiguous points  So ,
51

,...,AA  in the  OXY system,  

      
51

,...,bb       distances between contiguous points So , 
51

,...,BB in the  OXY system, 

    
uu

aa
51

,...,      distances between contiguous points  So ,  
51

,...,AA in the O’EQ system,                             

     
uu

bb
51

,...,      distances between contiguous points So ,  
51

,...,BB in the  O’EQ system, 

              
5a

e          the coordinate of point 
5

A of the screen  M reached by a ray of light after   

                        leaving slit 
0

S  at angle  , 

            
5b

e        the coordinate of point 
5

B  of the screen  M  reached by a ray of light 

                       after leaving slit 
0

S  at angle  , 

            Mo         a point on the screen  M  (a fixed line in the telescope) in relation to   

                        which the shift of  interference fringes is calculated, 

             
o

e        the coordinate of the Mo   point on the screen  M  in the O’EQ system.  

 
ow

lR /        the relative difference of distances traveled by the rays of light reaching    

                        one point of screen  M  in the O’EQ system,  

              k        the value of interference fringes shift,  

orw
lR /        the relative difference of distances traveled by the rays of light reaching    

                        distant points
55

, BA of screen  M  in the O’EQ system, 

            
r

K         the difference of relative differences of distances 
rw

R , 

             
r

V


        the peripheral velocity of a point i.e. a place on the Earth’s surface                       

                         where the interferometer (the observer) is located . 

             
r

V         the peripheral speed of a point i.e. a place on the Earth’s surface  

                         where the interferometer (the observer) is located . 
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zs

V


         the velocity at which the Earth’s center travels around the Sun,  

      
zs

V          the speed at which the Earth’s center travels around the Sun. 

      zeV


         the velocity at which the Earth’s center travels with respect  to the aether, 

      zeV          the speed at which the Earth’s center travels with respect  to the aether, 

      
se

V


         the velocity at which the Sun’s center travels with respect  to the aether, 

      
se

V          the speed at which the Sun’s center travels with respect  to the aether,                        

      
sg

V


         the velocity at which the Sun’s center travels around the center of our Galaxy, 

      
sg

V          the speed at which the Sun’s center travels around the center of our Galaxy,  

      
ge

V


         the velocity at which the center of our Galaxy moves with respect to the   

                    aether,  

      
ge

V          the speed at which the center of our Galaxy moves with respect  to the aether,                            

        N          Northern point of the horizon, 

        S          Southern point of the horizon,  

       
N

P         The North Pole,  

       
S

P         The South Pole, 

N S line         the line of intersection between the horizon plane and the celestial meridian     

                    plane which run through the point U ),(  , 

                  the angular speed of the Earth’s rotation, 

                   inclination of the ecliptic to the celestial equator, 

        p          annual precession within ecliptic (in longitude), 

                   true anomaly, 

         r          a radius vector, 

        a           an average Earth-Sun distance, 

        b           a small semi-axis of the Earth’s orbit,       

       
rg

T          stellar year, 

       
rz

T           tropical year, 

       
z

T           the duration of astronomical winter, 

  
0201

,VV


            the absolute velocities of the interferometer in the horizontal system. 

                    
01

VV
o


    or   

02
VV

o


  , 

       
s

           right ascension of the Sun, 

       
se

          right ascension of the  
se

V


 velocity,                                                                      

      
1se

           right ascension of the 
sese

VV



1

 velocity, 

       
zs

          right ascension of the   
zs

V


 velocity,             

    
zs

GHA         Greenwich Hour Angle of velocity  
zs

V


, 

      sGHA        Greenwich Hour Angle of the Sun 

GHAaries       Greenwich Hour Angle of the Aries point, 

    
zs

LHA         Local Hour Angle of velocity  
zs

V


, 

    
se

LHA         Local Hour Angle of velocity  
se

V


, 

    
1se

LHA        Local Hour Angle of velocity 
sese

VV



1

, 

        
zs

         declination of velocity  
zs

V


, 

        
se

         declination of velocity 
se

V


,  
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1se

            declination of velocity  
sese

VV



1

, 

       
zs

H            altitude of velocity  
zs

V


, 

       
se

H            altitude of velocity  
se

V


, 

       
1se

H           altitude of velocity  
sese

VV



1

, 

       
01

H            altitude of velocity 
01

V


,  

       
02

H            altitude of velocity  
02

V


, 

        
zs

A            azimuth of velocity  
zs

V


, 

        
se

A            azimuth of velocity  
se

V


, 

       
1se

A             azimuth of velocity 
sese

VV



1

, 

       
01

A             azimuth of velocity 
01

V


, 

       
02

A             azimuth of velocity 
02

V


, 

   U ),(             point U of geographical coordinates  ,  in which the interferometer  

                        (the observer) is situated,  

 
0201

, mm             rest mass of particle in systems 1 and 2 respectively  (Fig.10), 

    
21

, mm            mass of a particle in motion in systems 1 and 2, 

    
21

, FF


            forces acting on a particle in systems 1 and 2, 

     
21

,VV


           particle’s velocity in systems 1 and 2, 

     
21

,             average life time of unstable particles in system 1 and 2, 

 
21

,
AA

             frequency of atom vibrations in systems 1 and 2, 

    
21

,            angular speed of the Earth’s rotation in systems 1 and 2, 

    
21

, JJ             Earth’s moment of inertia in systems 1 and 2, 

 
21

,               times measured by atomic clocks  in systems 1 and 2, 

     
21

,TT             Earth’s sidereal days in systems 1 and 2, 

   
)1(2 T

             time measured by the atomic clock in system 2  at  
11

T ,   

        
T

R            difference of the times  
)1(22 T

T  , 

 
ba

ZAZA ,            atomic clocks situated along an Earth’s parallel, 

       
p

ZA            an atomic clock situated  at the South Pole, 

   
rbra

VV ,            the speeds of the 
ba

ZAZA ,  clocks situated on the parallel’s plane, 

rbra
VV

00
,             the absolute speeds of the ba ZAZA ,  clocks,    

         
       

p
V

0
            the absolute speed of the 

p
ZA clock, 

rbra 22
,            times measured by the 

ba ZAZA ,  clocks situated on the Earth’s parallel, 

      
p2

            time measured by the 
p

ZA
 
 clock situated at the South Pole, 

   
)2/(Tpa

R           the absolute value of the difference in times measured by  

                        the  
pa ZAZA , clocks during half-a-sidereal day since the time of their  

                        synchronization. 

   
)2/(Tba

R            the absolute value of the difference in times measured by  

                        the 
ba

ZAZA ,  clocks during half-a-sidereal day since the time of their  

                        synchronization, 

       synT             the UT of the clocks  synchronization time.   
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